MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcvb Structured version   Visualization version   GIF version

Theorem nfcvb 5394
Description: The "distinctor" expression ¬ ∀𝑥𝑥 = 𝑦, stating that 𝑥 and 𝑦 are not the same variable, can be written in terms of in the obvious way. This theorem is not true in a one-element domain, because then 𝑥𝑦 and 𝑥𝑥 = 𝑦 will both be true. (Contributed by Mario Carneiro, 8-Oct-2016.) Usage of this theorem is discouraged because it depends on ax-13 2380. (New usage is discouraged.)
Assertion
Ref Expression
nfcvb (𝑥𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)

Proof of Theorem nfcvb
StepHypRef Expression
1 nfnid 5393 . . . 4 ¬ 𝑦𝑦
2 eqidd 2741 . . . . 5 (∀𝑥 𝑥 = 𝑦𝑦 = 𝑦)
32drnfc1 2928 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑥𝑦𝑦𝑦))
41, 3mtbiri 327 . . 3 (∀𝑥 𝑥 = 𝑦 → ¬ 𝑥𝑦)
54con2i 139 . 2 (𝑥𝑦 → ¬ ∀𝑥 𝑥 = 𝑦)
6 nfcvf 2938 . 2 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
75, 6impbii 209 1 (𝑥𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1535  wnfc 2893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380  ax-ext 2711  ax-nul 5324  ax-pow 5383
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-cleq 2732  df-nfc 2895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator