MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcvb Structured version   Visualization version   GIF version

Theorem nfcvb 5268
Description: The "distinctor" expression ¬ ∀𝑥𝑥 = 𝑦, stating that 𝑥 and 𝑦 are not the same variable, can be written in terms of in the obvious way. This theorem is not true in a one-element domain, because then 𝑥𝑦 and 𝑥𝑥 = 𝑦 will both be true. Usage of this theorem is discouraged because it depends on ax-13 2383. (Contributed by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.)
Assertion
Ref Expression
nfcvb (𝑥𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)

Proof of Theorem nfcvb
StepHypRef Expression
1 nfnid 5267 . . . 4 ¬ 𝑦𝑦
2 eqidd 2820 . . . . 5 (∀𝑥 𝑥 = 𝑦𝑦 = 𝑦)
32drnfc1 2995 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝑥𝑦𝑦𝑦))
41, 3mtbiri 329 . . 3 (∀𝑥 𝑥 = 𝑦 → ¬ 𝑥𝑦)
54con2i 141 . 2 (𝑥𝑦 → ¬ ∀𝑥 𝑥 = 𝑦)
6 nfcvf 3005 . 2 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
75, 6impbii 211 1 (𝑥𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wal 1528  wnfc 2959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2383  ax-ext 2791  ax-nul 5201  ax-pow 5257
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-cleq 2812  df-clel 2891  df-nfc 2961
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator