Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfded2 | Structured version Visualization version GIF version |
Description: A deduction theorem that converts a not-free inference directly to deduction form. The first 2 hypotheses are the hypotheses of the deduction form. The third is an equality deduction (e.g., ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → 〈{𝑦 ∣ ∀𝑥𝑦 ∈ 𝐴}, {𝑦 ∣ ∀𝑥𝑦 ∈ 𝐵}〉 = 〈𝐴, 𝐵〉) for nfopd 4821) that starts from abidnf 3638. The last is assigned to the inference form (e.g., Ⅎ𝑥〈{𝑦 ∣ ∀𝑥𝑦 ∈ 𝐴}, {𝑦 ∣ ∀𝑥𝑦 ∈ 𝐵}〉 for nfop 4820) whose hypotheses are satisfied using nfaba1 2915. (Contributed by NM, 19-Nov-2020.) |
Ref | Expression |
---|---|
nfded2.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfded2.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
nfded2.3 | ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → 𝐶 = 𝐷) |
nfded2.4 | ⊢ Ⅎ𝑥𝐶 |
Ref | Expression |
---|---|
nfded2 | ⊢ (𝜑 → Ⅎ𝑥𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfded2.4 | . 2 ⊢ Ⅎ𝑥𝐶 | |
2 | nfded2.1 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfded2.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
4 | nfnfc1 2910 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 | |
5 | nfnfc1 2910 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐵 | |
6 | 4, 5 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑥(Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) |
7 | nfded2.3 | . . . 4 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → 𝐶 = 𝐷) | |
8 | 6, 7 | nfceqdf 2902 | . . 3 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → (Ⅎ𝑥𝐶 ↔ Ⅎ𝑥𝐷)) |
9 | 2, 3, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → (Ⅎ𝑥𝐶 ↔ Ⅎ𝑥𝐷)) |
10 | 1, 9 | mpbii 232 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-cleq 2730 df-nfc 2889 |
This theorem is referenced by: nfopdALT 36985 |
Copyright terms: Public domain | W3C validator |