| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfded2 | Structured version Visualization version GIF version | ||
| Description: A deduction theorem that converts a not-free inference directly to deduction form. The first 2 hypotheses are the hypotheses of the deduction form. The third is an equality deduction (e.g., ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → 〈{𝑦 ∣ ∀𝑥𝑦 ∈ 𝐴}, {𝑦 ∣ ∀𝑥𝑦 ∈ 𝐵}〉 = 〈𝐴, 𝐵〉) for nfopd 4890) that starts from abidnf 3708. The last is assigned to the inference form (e.g., Ⅎ𝑥〈{𝑦 ∣ ∀𝑥𝑦 ∈ 𝐴}, {𝑦 ∣ ∀𝑥𝑦 ∈ 𝐵}〉 for nfop 4889) whose hypotheses are satisfied using nfaba1 2913. (Contributed by NM, 19-Nov-2020.) |
| Ref | Expression |
|---|---|
| nfded2.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfded2.2 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| nfded2.3 | ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → 𝐶 = 𝐷) |
| nfded2.4 | ⊢ Ⅎ𝑥𝐶 |
| Ref | Expression |
|---|---|
| nfded2 | ⊢ (𝜑 → Ⅎ𝑥𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfded2.4 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 2 | nfded2.1 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 3 | nfded2.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 4 | nfnfc1 2908 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 | |
| 5 | nfnfc1 2908 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐵 | |
| 6 | 4, 5 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑥(Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) |
| 7 | nfded2.3 | . . . 4 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → 𝐶 = 𝐷) | |
| 8 | 6, 7 | nfceqdf 2901 | . . 3 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → (Ⅎ𝑥𝐶 ↔ Ⅎ𝑥𝐷)) |
| 9 | 2, 3, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → (Ⅎ𝑥𝐶 ↔ Ⅎ𝑥𝐷)) |
| 10 | 1, 9 | mpbii 233 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnfc 2890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2729 df-nfc 2892 |
| This theorem is referenced by: nfopdALT 38972 |
| Copyright terms: Public domain | W3C validator |