Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfunidALT | Structured version Visualization version GIF version |
Description: Deduction version of nfuni 4843. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfunidALT.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfunidALT | ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfunidALT.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
2 | abidnf 3633 | . . 3 ⊢ (Ⅎ𝑥𝐴 → {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} = 𝐴) | |
3 | 2 | unieqd 4850 | . 2 ⊢ (Ⅎ𝑥𝐴 → ∪ {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} = ∪ 𝐴) |
4 | nfaba1 2914 | . . 3 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} | |
5 | 4 | nfuni 4843 | . 2 ⊢ Ⅎ𝑥∪ {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} |
6 | 1, 3, 5 | nfded 36908 | 1 ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∈ wcel 2108 {cab 2715 Ⅎwnfc 2886 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |