![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfunidALT | Structured version Visualization version GIF version |
Description: Deduction version of nfuni 4916. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfunidALT.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfunidALT | ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfunidALT.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
2 | abidnf 3699 | . . 3 ⊢ (Ⅎ𝑥𝐴 → {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} = 𝐴) | |
3 | 2 | unieqd 4923 | . 2 ⊢ (Ⅎ𝑥𝐴 → ∪ {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} = ∪ 𝐴) |
4 | nfaba1 2912 | . . 3 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} | |
5 | 4 | nfuni 4916 | . 2 ⊢ Ⅎ𝑥∪ {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} |
6 | 1, 3, 5 | nfded 37837 | 1 ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 ∈ wcel 2107 {cab 2710 Ⅎwnfc 2884 ∪ cuni 4909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-v 3477 df-in 3956 df-ss 3966 df-uni 4910 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |