Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfunidALT Structured version   Visualization version   GIF version

Theorem nfunidALT 38926
Description: Deduction version of nfuni 4938. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
nfunidALT.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfunidALT (𝜑𝑥 𝐴)

Proof of Theorem nfunidALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfunidALT.1 . 2 (𝜑𝑥𝐴)
2 abidnf 3724 . . 3 (𝑥𝐴 → {𝑦 ∣ ∀𝑥 𝑦𝐴} = 𝐴)
32unieqd 4944 . 2 (𝑥𝐴 {𝑦 ∣ ∀𝑥 𝑦𝐴} = 𝐴)
4 nfaba1 2916 . . 3 𝑥{𝑦 ∣ ∀𝑥 𝑦𝐴}
54nfuni 4938 . 2 𝑥 {𝑦 ∣ ∀𝑥 𝑦𝐴}
61, 3, 5nfded 38923 1 (𝜑𝑥 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wcel 2108  {cab 2717  wnfc 2893   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993  df-uni 4932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator