Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfunidALT Structured version   Visualization version   GIF version

Theorem nfunidALT 38970
Description: Deduction version of nfuni 4881. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
nfunidALT.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfunidALT (𝜑𝑥 𝐴)

Proof of Theorem nfunidALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfunidALT.1 . 2 (𝜑𝑥𝐴)
2 abidnf 3676 . . 3 (𝑥𝐴 → {𝑦 ∣ ∀𝑥 𝑦𝐴} = 𝐴)
32unieqd 4887 . 2 (𝑥𝐴 {𝑦 ∣ ∀𝑥 𝑦𝐴} = 𝐴)
4 nfaba1 2900 . . 3 𝑥{𝑦 ∣ ∀𝑥 𝑦𝐴}
54nfuni 4881 . 2 𝑥 {𝑦 ∣ ∀𝑥 𝑦𝐴}
61, 3, 5nfded 38967 1 (𝜑𝑥 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wcel 2109  {cab 2708  wnfc 2877   cuni 4874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-v 3452  df-ss 3934  df-uni 4875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator