Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfunidALT Structured version   Visualization version   GIF version

Theorem nfunidALT 36721
Description: Deduction version of nfuni 4826. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
nfunidALT.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfunidALT (𝜑𝑥 𝐴)

Proof of Theorem nfunidALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfunidALT.1 . 2 (𝜑𝑥𝐴)
2 abidnf 3616 . . 3 (𝑥𝐴 → {𝑦 ∣ ∀𝑥 𝑦𝐴} = 𝐴)
32unieqd 4833 . 2 (𝑥𝐴 {𝑦 ∣ ∀𝑥 𝑦𝐴} = 𝐴)
4 nfaba1 2912 . . 3 𝑥{𝑦 ∣ ∀𝑥 𝑦𝐴}
54nfuni 4826 . 2 𝑥 {𝑦 ∣ ∀𝑥 𝑦𝐴}
61, 3, 5nfded 36718 1 (𝜑𝑥 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1541  wcel 2110  {cab 2714  wnfc 2884   cuni 4819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-v 3410  df-in 3873  df-ss 3883  df-uni 4820
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator