MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnfc1 Structured version   Visualization version   GIF version

Theorem nfnfc1 2912
Description: The setvar 𝑥 is bound in 𝑥𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnfc1 𝑥𝑥𝐴

Proof of Theorem nfnfc1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2891 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfnf1 2155 . . 3 𝑥𝑥 𝑦𝐴
32nfal 2321 . 2 𝑥𝑦𝑥 𝑦𝐴
41, 3nfxfr 1859 1 𝑥𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wal 1540  wnf 1790  wcel 2110  wnfc 2889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-10 2141  ax-11 2158  ax-12 2175
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1787  df-nf 1791  df-nfc 2891
This theorem is referenced by:  vtoclgft  3491  sbcralt  3810  sbcrext  3811  csbiebt  3867  nfopd  4827  nfimad  5977  nffvd  6783  nfded  36977  nfded2  36978  nfunidALT2  36979
  Copyright terms: Public domain W3C validator