Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfnfc1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is bound in Ⅎ𝑥𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2889 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
2 | nfnf1 2151 | . . 3 ⊢ Ⅎ𝑥Ⅎ𝑥 𝑦 ∈ 𝐴 | |
3 | 2 | nfal 2317 | . 2 ⊢ Ⅎ𝑥∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | 1, 3 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1537 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-nfc 2889 |
This theorem is referenced by: vtoclgft 3492 sbcralt 3805 sbcrext 3806 csbiebt 3862 nfopd 4821 nfimad 5978 nffvd 6786 nfded 36981 nfded2 36982 nfunidALT2 36983 |
Copyright terms: Public domain | W3C validator |