![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfnfc1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is bound in Ⅎ𝑥𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2895 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
2 | nfnf1 2155 | . . 3 ⊢ Ⅎ𝑥Ⅎ𝑥 𝑦 ∈ 𝐴 | |
3 | 2 | nfal 2327 | . 2 ⊢ Ⅎ𝑥∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | 1, 3 | nfxfr 1851 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1535 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-nfc 2895 |
This theorem is referenced by: cbvexeqsetf 3503 sbcralt 3894 sbcrext 3895 csbiebt 3951 nfopd 4914 nfimad 6098 nffvd 6932 wl-issetft 37536 nfded 38923 nfded2 38924 nfunidALT2 38925 |
Copyright terms: Public domain | W3C validator |