MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnfc1 Structured version   Visualization version   GIF version

Theorem nfnfc1 2897
Description: The setvar 𝑥 is bound in 𝑥𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnfc1 𝑥𝑥𝐴

Proof of Theorem nfnfc1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2881 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfnf1 2157 . . 3 𝑥𝑥 𝑦𝐴
32nfal 2324 . 2 𝑥𝑦𝑥 𝑦𝐴
41, 3nfxfr 1854 1 𝑥𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wal 1539  wnf 1784  wcel 2111  wnfc 2879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2144  ax-11 2160  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-nfc 2881
This theorem is referenced by:  cbvexeqsetf  3451  sbcralt  3818  sbcrext  3819  csbiebt  3874  nfopd  4839  nfimad  6017  nffvd  6834  wl-issetft  37624  nfded  39014  nfded2  39015  nfunidALT2  39016
  Copyright terms: Public domain W3C validator