MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnfc1 Structured version   Visualization version   GIF version

Theorem nfnfc1 2910
Description: The setvar 𝑥 is bound in 𝑥𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnfc1 𝑥𝑥𝐴

Proof of Theorem nfnfc1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2889 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfnf1 2151 . . 3 𝑥𝑥 𝑦𝐴
32nfal 2317 . 2 𝑥𝑦𝑥 𝑦𝐴
41, 3nfxfr 1855 1 𝑥𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wal 1537  wnf 1786  wcel 2106  wnfc 2887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-nfc 2889
This theorem is referenced by:  vtoclgft  3492  sbcralt  3805  sbcrext  3806  csbiebt  3862  nfopd  4821  nfimad  5978  nffvd  6786  nfded  36981  nfded2  36982  nfunidALT2  36983
  Copyright terms: Public domain W3C validator