| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnfc1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is bound in Ⅎ𝑥𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfnfc1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfc 2881 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 2 | nfnf1 2157 | . . 3 ⊢ Ⅎ𝑥Ⅎ𝑥 𝑦 ∈ 𝐴 | |
| 3 | 2 | nfal 2324 | . 2 ⊢ Ⅎ𝑥∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | 1, 3 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∀wal 1539 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-nfc 2881 |
| This theorem is referenced by: cbvexeqsetf 3451 sbcralt 3818 sbcrext 3819 csbiebt 3874 nfopd 4839 nfimad 6017 nffvd 6834 wl-issetft 37624 nfded 39014 nfded2 39015 nfunidALT2 39016 |
| Copyright terms: Public domain | W3C validator |