MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnfc1 Structured version   Visualization version   GIF version

Theorem nfnfc1 2902
Description: The setvar 𝑥 is bound in 𝑥𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnfc1 𝑥𝑥𝐴

Proof of Theorem nfnfc1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2881 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfnf1 2144 . . 3 𝑥𝑥 𝑦𝐴
32nfal 2312 . 2 𝑥𝑦𝑥 𝑦𝐴
41, 3nfxfr 1848 1 𝑥𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wal 1532  wnf 1778  wcel 2099  wnfc 2879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-10 2130  ax-11 2147  ax-12 2167
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ex 1775  df-nf 1779  df-nfc 2881
This theorem is referenced by:  issetft  3484  sbcralt  3863  sbcrext  3864  csbiebt  3920  nfopd  4886  nfimad  6066  nffvd  6903  wl-issetft  37043  nfded  38433  nfded2  38434  nfunidALT2  38435
  Copyright terms: Public domain W3C validator