![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfnfc1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is bound in Ⅎ𝑥𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2884 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
2 | nfnf1 2150 | . . 3 ⊢ Ⅎ𝑥Ⅎ𝑥 𝑦 ∈ 𝐴 | |
3 | 2 | nfal 2315 | . 2 ⊢ Ⅎ𝑥∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | 1, 3 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1538 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-11 2153 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ex 1781 df-nf 1785 df-nfc 2884 |
This theorem is referenced by: issetft 3487 sbcralt 3866 sbcrext 3867 csbiebt 3923 nfopd 4890 nfimad 6068 nffvd 6903 wl-issetft 36908 nfded 38301 nfded2 38302 nfunidALT2 38303 |
Copyright terms: Public domain | W3C validator |