Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfnfc1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is bound in Ⅎ𝑥𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfnfc1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2891 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
2 | nfnf1 2155 | . . 3 ⊢ Ⅎ𝑥Ⅎ𝑥 𝑦 ∈ 𝐴 | |
3 | 2 | nfal 2321 | . 2 ⊢ Ⅎ𝑥∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | 1, 3 | nfxfr 1859 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1540 Ⅎwnf 1790 ∈ wcel 2110 Ⅎwnfc 2889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-10 2141 ax-11 2158 ax-12 2175 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1787 df-nf 1791 df-nfc 2891 |
This theorem is referenced by: vtoclgft 3491 sbcralt 3810 sbcrext 3811 csbiebt 3867 nfopd 4827 nfimad 5977 nffvd 6783 nfded 36977 nfded2 36978 nfunidALT2 36979 |
Copyright terms: Public domain | W3C validator |