MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnfc1 Structured version   Visualization version   GIF version

Theorem nfnfc1 2905
Description: The setvar 𝑥 is bound in 𝑥𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnfc1 𝑥𝑥𝐴

Proof of Theorem nfnfc1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2884 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfnf1 2150 . . 3 𝑥𝑥 𝑦𝐴
32nfal 2315 . 2 𝑥𝑦𝑥 𝑦𝐴
41, 3nfxfr 1854 1 𝑥𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wal 1538  wnf 1784  wcel 2105  wnfc 2882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-11 2153  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ex 1781  df-nf 1785  df-nfc 2884
This theorem is referenced by:  issetft  3487  sbcralt  3866  sbcrext  3867  csbiebt  3923  nfopd  4890  nfimad  6068  nffvd  6903  wl-issetft  36908  nfded  38301  nfded2  38302  nfunidALT2  38303
  Copyright terms: Public domain W3C validator