MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnfc1 Structured version   Visualization version   GIF version

Theorem nfnfc1 2909
Description: The setvar 𝑥 is bound in 𝑥𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.)
Assertion
Ref Expression
nfnfc1 𝑥𝑥𝐴

Proof of Theorem nfnfc1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2888 . 2 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
2 nfnf1 2153 . . 3 𝑥𝑥 𝑦𝐴
32nfal 2321 . 2 𝑥𝑦𝑥 𝑦𝐴
41, 3nfxfr 1856 1 𝑥𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wal 1537  wnf 1787  wcel 2108  wnfc 2886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-nfc 2888
This theorem is referenced by:  vtoclgft  3482  sbcralt  3801  sbcrext  3802  csbiebt  3858  nfopd  4818  nfimad  5967  nffvd  6768  nfded  36908  nfded2  36909  nfunidALT2  36910
  Copyright terms: Public domain W3C validator