MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeu1ALT Structured version   Visualization version   GIF version

Theorem nfeu1ALT 2589
Description: Alternate proof of nfeu1 2588. This illustrates the systematic way of proving nonfreeness in a defined expression: consider the definiens as a tree whose nodes are its subformulas, and prove by tree-induction nonfreeness of each node, starting from the leaves (generally using nfv 1918 or nf* theorems for previously defined expressions) and up to the root. Here, the definiens is a conjunction of two previously defined expressions, which automatically yields the present proof. (Contributed by BJ, 2-Oct-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfeu1ALT 𝑥∃!𝑥𝜑

Proof of Theorem nfeu1ALT
StepHypRef Expression
1 df-eu 2569 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
2 nfe1 2149 . . 3 𝑥𝑥𝜑
3 nfmo1 2557 . . 3 𝑥∃*𝑥𝜑
42, 3nfan 1903 . 2 𝑥(∃𝑥𝜑 ∧ ∃*𝑥𝜑)
51, 4nfxfr 1856 1 𝑥∃!𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wa 395  wex 1783  wnf 1787  ∃*wmo 2538  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-mo 2540  df-eu 2569
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator