Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeu1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for uniqueness. See also nfeu1ALT 2589. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfeu1 | ⊢ Ⅎ𝑥∃!𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu6 2574 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
2 | nfa1 2150 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 ↔ 𝑥 = 𝑦) | |
3 | 2 | nfex 2322 | . 2 ⊢ Ⅎ𝑥∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
4 | 1, 3 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥∃!𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-mo 2540 df-eu 2569 |
This theorem is referenced by: eupicka 2636 2eu8 2660 nfreu1 3296 eusv2i 5312 eusv2nf 5313 reusv2lem3 5318 iota2 6407 sniota 6409 fv3 6774 tz6.12c 6781 eusvobj1 7249 opiota 7872 dfac5lem5 9814 bnj1366 32709 bnj849 32805 pm14.24 41939 eu2ndop1stv 44504 tz6.12c-afv2 44621 setrec2lem2 46286 |
Copyright terms: Public domain | W3C validator |