MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeu1 Structured version   Visualization version   GIF version

Theorem nfeu1 2588
Description: Bound-variable hypothesis builder for uniqueness. See also nfeu1ALT 2589. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfeu1 𝑥∃!𝑥𝜑

Proof of Theorem nfeu1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eu6 2574 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 nfa1 2152 . . 3 𝑥𝑥(𝜑𝑥 = 𝑦)
32nfex 2325 . 2 𝑥𝑦𝑥(𝜑𝑥 = 𝑦)
41, 3nfxfr 1853 1 𝑥∃!𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538  wex 1779  wnf 1783  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-mo 2540  df-eu 2569
This theorem is referenced by:  eupicka  2634  2eu8  2659  nfreu1  3396  eusv2i  5369  eusv2nf  5370  reusv2lem3  5375  iota2  6525  sniota  6527  fv3  6899  tz6.12cOLD  6908  eusvobj1  7403  opiota  8063  dfac5lem5  10146  bnj1366  34865  bnj849  34961  pm14.24  44423  eu2ndop1stv  47121  tz6.12c-afv2  47238  setrec2lem2  49525
  Copyright terms: Public domain W3C validator