![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfeu1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for uniqueness. See also nfeu1ALT 2592. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfeu1 | ⊢ Ⅎ𝑥∃!𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu6 2577 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
2 | nfa1 2152 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 ↔ 𝑥 = 𝑦) | |
3 | 2 | nfex 2328 | . 2 ⊢ Ⅎ𝑥∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
4 | 1, 3 | nfxfr 1851 | 1 ⊢ Ⅎ𝑥∃!𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∀wal 1535 ∃wex 1777 Ⅎwnf 1781 ∃!weu 2571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-mo 2543 df-eu 2572 |
This theorem is referenced by: eupicka 2637 2eu8 2662 nfreu1 3420 eusv2i 5412 eusv2nf 5413 reusv2lem3 5418 iota2 6562 sniota 6564 fv3 6938 tz6.12cOLD 6947 eusvobj1 7441 opiota 8100 dfac5lem5 10196 bnj1366 34805 bnj849 34901 pm14.24 44401 eu2ndop1stv 47040 tz6.12c-afv2 47157 setrec2lem2 48786 |
Copyright terms: Public domain | W3C validator |