| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeu1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for uniqueness. See also nfeu1ALT 2582. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeu1 | ⊢ Ⅎ𝑥∃!𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu6 2567 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 2 | nfa1 2152 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 ↔ 𝑥 = 𝑦) | |
| 3 | 2 | nfex 2323 | . 2 ⊢ Ⅎ𝑥∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
| 4 | 1, 3 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∃!𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 ∃!weu 2561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-mo 2533 df-eu 2562 |
| This theorem is referenced by: eupicka 2627 2eu8 2652 nfreu1 3373 eusv2i 5333 eusv2nf 5334 reusv2lem3 5339 iota2 6471 sniota 6473 fv3 6840 eusvobj1 7342 opiota 7994 dfac5lem5 10021 bnj1366 34796 bnj849 34892 pm14.24 44405 eu2ndop1stv 47109 tz6.12c-afv2 47226 setrec2lem2 49679 |
| Copyright terms: Public domain | W3C validator |