| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeu1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for uniqueness. See also nfeu1ALT 2584. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeu1 | ⊢ Ⅎ𝑥∃!𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu6 2569 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 2 | nfa1 2154 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 ↔ 𝑥 = 𝑦) | |
| 3 | 2 | nfex 2325 | . 2 ⊢ Ⅎ𝑥∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
| 4 | 1, 3 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥∃!𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1539 ∃wex 1780 Ⅎwnf 1784 ∃!weu 2563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-mo 2535 df-eu 2564 |
| This theorem is referenced by: eupicka 2629 2eu8 2654 nfreu1 3374 eusv2i 5330 eusv2nf 5331 reusv2lem3 5336 iota2 6470 sniota 6472 fv3 6840 eusvobj1 7339 opiota 7991 dfac5lem5 10018 bnj1366 34841 bnj849 34937 pm14.24 44535 eu2ndop1stv 47235 tz6.12c-afv2 47352 setrec2lem2 49805 |
| Copyright terms: Public domain | W3C validator |