| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeu1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for uniqueness. See also nfeu1ALT 2582. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeu1 | ⊢ Ⅎ𝑥∃!𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu6 2567 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 2 | nfa1 2152 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 ↔ 𝑥 = 𝑦) | |
| 3 | 2 | nfex 2323 | . 2 ⊢ Ⅎ𝑥∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
| 4 | 1, 3 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∃!𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 ∃!weu 2561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-mo 2533 df-eu 2562 |
| This theorem is referenced by: eupicka 2627 2eu8 2652 nfreu1 3381 eusv2i 5344 eusv2nf 5345 reusv2lem3 5350 iota2 6488 sniota 6490 fv3 6858 tz6.12cOLD 6867 eusvobj1 7362 opiota 8017 dfac5lem5 10056 bnj1366 34792 bnj849 34888 pm14.24 44394 eu2ndop1stv 47099 tz6.12c-afv2 47216 setrec2lem2 49656 |
| Copyright terms: Public domain | W3C validator |