MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeu1 Structured version   Visualization version   GIF version

Theorem nfeu1 2581
Description: Bound-variable hypothesis builder for uniqueness. See also nfeu1ALT 2582. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfeu1 𝑥∃!𝑥𝜑

Proof of Theorem nfeu1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eu6 2567 . 2 (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
2 nfa1 2152 . . 3 𝑥𝑥(𝜑𝑥 = 𝑦)
32nfex 2323 . 2 𝑥𝑦𝑥(𝜑𝑥 = 𝑦)
41, 3nfxfr 1853 1 𝑥∃!𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  wb 206  wal 1538  wex 1779  wnf 1783  ∃!weu 2561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-mo 2533  df-eu 2562
This theorem is referenced by:  eupicka  2627  2eu8  2652  nfreu1  3373  eusv2i  5333  eusv2nf  5334  reusv2lem3  5339  iota2  6471  sniota  6473  fv3  6840  eusvobj1  7342  opiota  7994  dfac5lem5  10021  bnj1366  34796  bnj849  34892  pm14.24  44405  eu2ndop1stv  47109  tz6.12c-afv2  47226  setrec2lem2  49679
  Copyright terms: Public domain W3C validator