![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfeu1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for uniqueness. See also nfeu1ALT 2636. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfeu1 | ⊢ Ⅎ𝑥∃!𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu6 2617 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
2 | nfa1 2121 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 ↔ 𝑥 = 𝑦) | |
3 | 2 | nfex 2306 | . 2 ⊢ Ⅎ𝑥∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
4 | 1, 3 | nfxfr 1834 | 1 ⊢ Ⅎ𝑥∃!𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∀wal 1520 ∃wex 1761 Ⅎwnf 1765 ∃!weu 2611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-10 2112 ax-11 2126 ax-12 2141 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-ex 1762 df-nf 1766 df-mo 2576 df-eu 2612 |
This theorem is referenced by: eupicka 2689 2eu8 2716 exists2OLD 2721 nfreu1 3331 eusv2i 5186 eusv2nf 5187 reusv2lem3 5192 iota2 6215 sniota 6216 fv3 6556 tz6.12c 6563 eusvobj1 7010 opiota 7613 dfac5lem5 9399 bnj1366 31718 bnj849 31813 pm14.24 40302 eu2ndop1stv 42840 tz6.12c-afv2 42957 setrec2lem2 44277 |
Copyright terms: Public domain | W3C validator |