Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfeu1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for uniqueness. See also nfeu1ALT 2609. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfeu1 | ⊢ Ⅎ𝑥∃!𝑥𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eu6 2593 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
2 | nfa1 2152 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 ↔ 𝑥 = 𝑦) | |
3 | 2 | nfex 2332 | . 2 ⊢ Ⅎ𝑥∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
4 | 1, 3 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥∃!𝑥𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∀wal 1536 ∃wex 1781 Ⅎwnf 1785 ∃!weu 2587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-10 2142 ax-11 2158 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-ex 1782 df-nf 1786 df-mo 2557 df-eu 2588 |
This theorem is referenced by: eupicka 2655 2eu8 2680 nfreu1 3288 eusv2i 5263 eusv2nf 5264 reusv2lem3 5269 iota2 6324 sniota 6326 fv3 6676 tz6.12c 6683 eusvobj1 7144 opiota 7761 dfac5lem5 9587 bnj1366 32329 bnj849 32425 pm14.24 41509 eu2ndop1stv 44049 tz6.12c-afv2 44166 setrec2lem2 45615 |
Copyright terms: Public domain | W3C validator |