| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeu1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for uniqueness. See also nfeu1ALT 2589. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfeu1 | ⊢ Ⅎ𝑥∃!𝑥𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu6 2574 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | |
| 2 | nfa1 2152 | . . 3 ⊢ Ⅎ𝑥∀𝑥(𝜑 ↔ 𝑥 = 𝑦) | |
| 3 | 2 | nfex 2325 | . 2 ⊢ Ⅎ𝑥∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) |
| 4 | 1, 3 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∃!𝑥𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 ∃!weu 2568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-mo 2540 df-eu 2569 |
| This theorem is referenced by: eupicka 2634 2eu8 2659 nfreu1 3396 eusv2i 5369 eusv2nf 5370 reusv2lem3 5375 iota2 6525 sniota 6527 fv3 6899 tz6.12cOLD 6908 eusvobj1 7403 opiota 8063 dfac5lem5 10146 bnj1366 34865 bnj849 34961 pm14.24 44423 eu2ndop1stv 47121 tz6.12c-afv2 47238 setrec2lem2 49525 |
| Copyright terms: Public domain | W3C validator |