|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nfinOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of nfin 4224 as of 14-May-2025. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nfin.1 | ⊢ Ⅎ𝑥𝐴 | 
| nfin.2 | ⊢ Ⅎ𝑥𝐵 | 
| Ref | Expression | 
|---|---|
| nfinOLD | ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfin5 3959 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑦 ∈ 𝐴 ∣ 𝑦 ∈ 𝐵} | |
| 2 | nfin.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 2 | nfcri 2897 | . . 3 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | 
| 4 | nfin.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 3, 4 | nfrabw 3475 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝑦 ∈ 𝐵} | 
| 6 | 1, 5 | nfcxfr 2903 | 1 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∈ wcel 2108 Ⅎwnfc 2890 {crab 3436 ∩ cin 3950 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-rab 3437 df-in 3958 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |