| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfinOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of nfin 4169 as of 14-May-2025. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfin.1 | ⊢ Ⅎ𝑥𝐴 |
| nfin.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfinOLD | ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin5 3905 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑦 ∈ 𝐴 ∣ 𝑦 ∈ 𝐵} | |
| 2 | nfin.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 2 | nfcri 2886 | . . 3 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 4 | nfin.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 3, 4 | nfrabw 3432 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝑦 ∈ 𝐵} |
| 6 | 1, 5 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Ⅎwnfc 2879 {crab 3395 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-in 3904 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |