MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfinOLD Structured version   Visualization version   GIF version

Theorem nfinOLD 4225
Description: Obsolete version of nfin 4224 as of 14-May-2025. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfin.1 𝑥𝐴
nfin.2 𝑥𝐵
Assertion
Ref Expression
nfinOLD 𝑥(𝐴𝐵)

Proof of Theorem nfinOLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfin5 3959 . 2 (𝐴𝐵) = {𝑦𝐴𝑦𝐵}
2 nfin.2 . . . 4 𝑥𝐵
32nfcri 2897 . . 3 𝑥 𝑦𝐵
4 nfin.1 . . 3 𝑥𝐴
53, 4nfrabw 3475 . 2 𝑥{𝑦𝐴𝑦𝐵}
61, 5nfcxfr 2903 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wnfc 2890  {crab 3436  cin 3950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-rab 3437  df-in 3958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator