![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrabw | Structured version Visualization version GIF version |
Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3473 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 13-Oct-2003.) Avoid ax-13 2372. (Revised by Gino Giotto, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Nov-2024.) |
Ref | Expression |
---|---|
nfrabw.1 | ⊢ Ⅎ𝑥𝜑 |
nfrabw.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrabw | ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3434 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
2 | nftru 1807 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
3 | nfrabw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | nfcri 2891 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
5 | nfrabw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
6 | 4, 5 | nfan 1903 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
8 | 2, 7 | nfabdw 2927 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
9 | 8 | mptru 1549 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
10 | 1, 9 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ⊤wtru 1543 Ⅎwnf 1786 ∈ wcel 2107 {cab 2710 Ⅎwnfc 2884 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rab 3434 |
This theorem is referenced by: nfdif 4126 nfin 4217 nfse 5652 elfvmptrab1w 7025 elovmporab 7652 elovmporab1w 7653 ovmpt3rab1 7664 elovmpt3rab1 7666 mpoxopoveq 8204 nfoi 9509 scottex 9880 elmptrab 23331 iundisjf 31820 nnindf 32025 fedgmullem2 32715 bnj1398 34045 bnj1445 34055 bnj1449 34059 nfwlim 34794 finminlem 35203 poimirlem26 36514 poimirlem27 36515 indexa 36601 nfscott 42998 binomcxplemdvbinom 43112 binomcxplemdvsum 43114 binomcxplemnotnn0 43115 infnsuprnmpt 43954 allbutfiinf 44130 supminfrnmpt 44155 supminfxrrnmpt 44181 fnlimfvre 44390 fnlimabslt 44395 dvnprodlem1 44662 stoweidlem16 44732 stoweidlem31 44747 stoweidlem34 44750 stoweidlem35 44751 stoweidlem48 44764 stoweidlem51 44767 stoweidlem53 44769 stoweidlem54 44770 stoweidlem57 44773 stoweidlem59 44775 fourierdlem31 44854 fourierdlem48 44870 fourierdlem51 44873 etransclem32 44982 ovncvrrp 45280 smflim 45493 smflimmpt 45526 smfsupmpt 45531 smfsupxr 45532 smfinfmpt 45535 smflimsuplem7 45542 |
Copyright terms: Public domain | W3C validator |