MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrabw Structured version   Visualization version   GIF version

Theorem nfrabw 3440
Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3442 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by NM, 13-Oct-2003.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Nov-2024.)
Hypotheses
Ref Expression
nfrabw.1 𝑥𝜑
nfrabw.2 𝑥𝐴
Assertion
Ref Expression
nfrabw 𝑥{𝑦𝐴𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfrabw
StepHypRef Expression
1 df-rab 3403 . 2 {𝑦𝐴𝜑} = {𝑦 ∣ (𝑦𝐴𝜑)}
2 nftru 1804 . . . 4 𝑦
3 nfrabw.2 . . . . . . 7 𝑥𝐴
43nfcri 2883 . . . . . 6 𝑥 𝑦𝐴
5 nfrabw.1 . . . . . 6 𝑥𝜑
64, 5nfan 1899 . . . . 5 𝑥(𝑦𝐴𝜑)
76a1i 11 . . . 4 (⊤ → Ⅎ𝑥(𝑦𝐴𝜑))
82, 7nfabdw 2913 . . 3 (⊤ → 𝑥{𝑦 ∣ (𝑦𝐴𝜑)})
98mptru 1547 . 2 𝑥{𝑦 ∣ (𝑦𝐴𝜑)}
101, 9nfcxfr 2889 1 𝑥{𝑦𝐴𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395  wtru 1541  wnf 1783  wcel 2109  {cab 2707  wnfc 2876  {crab 3402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3403
This theorem is referenced by:  nfdifOLD  4089  nfinOLD  4184  nfse  5605  elfvmptrab1w  6977  elovmporab  7615  elovmporab1w  7616  ovmpt3rab1  7627  elovmpt3rab1  7629  mpoxopoveq  8175  nfoi  9443  scottex  9814  elmptrab  23747  iundisjf  32568  nnindf  32794  fedgmullem2  33619  bnj1398  35017  bnj1445  35027  bnj1449  35031  nfwlim  35803  finminlem  36299  poimirlem26  37633  poimirlem27  37634  indexa  37720  nfscott  44221  binomcxplemdvbinom  44335  binomcxplemdvsum  44337  binomcxplemnotnn0  44338  infnsuprnmpt  45237  allbutfiinf  45409  supminfrnmpt  45434  supminfxrrnmpt  45460  fnlimfvre  45665  fnlimabslt  45670  dvnprodlem1  45937  stoweidlem16  46007  stoweidlem31  46022  stoweidlem34  46025  stoweidlem35  46026  stoweidlem48  46039  stoweidlem51  46042  stoweidlem53  46044  stoweidlem54  46045  stoweidlem57  46048  stoweidlem59  46050  fourierdlem31  46129  fourierdlem48  46145  fourierdlem51  46148  etransclem32  46257  ovncvrrp  46555  smflim  46768  smflimmpt  46801  smfsupmpt  46806  smfsupxr  46807  smfinfmpt  46810  smflimsuplem7  46817
  Copyright terms: Public domain W3C validator