![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrabw | Structured version Visualization version GIF version |
Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3459 with a disjoint variable condition, which does not require ax-13 2365. (Contributed by NM, 13-Oct-2003.) Avoid ax-13 2365. (Revised by GG, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Nov-2024.) |
Ref | Expression |
---|---|
nfrabw.1 | ⊢ Ⅎ𝑥𝜑 |
nfrabw.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrabw | ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3419 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
2 | nftru 1798 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
3 | nfrabw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | nfcri 2882 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
5 | nfrabw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
6 | 4, 5 | nfan 1894 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
8 | 2, 7 | nfabdw 2915 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
9 | 8 | mptru 1540 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
10 | 1, 9 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 ⊤wtru 1534 Ⅎwnf 1777 ∈ wcel 2098 {cab 2702 Ⅎwnfc 2875 {crab 3418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-rab 3419 |
This theorem is referenced by: nfdifOLD 4124 nfinOLD 4217 nfse 5656 elfvmptrab1w 7035 elovmporab 7671 elovmporab1w 7672 ovmpt3rab1 7683 elovmpt3rab1 7685 mpoxopoveq 8233 nfoi 9553 scottex 9924 elmptrab 23814 iundisjf 32500 nnindf 32709 fedgmullem2 33497 bnj1398 34835 bnj1445 34845 bnj1449 34849 nfwlim 35594 finminlem 35978 poimirlem26 37295 poimirlem27 37296 indexa 37382 nfscott 43850 binomcxplemdvbinom 43964 binomcxplemdvsum 43966 binomcxplemnotnn0 43967 infnsuprnmpt 44796 allbutfiinf 44972 supminfrnmpt 44997 supminfxrrnmpt 45023 fnlimfvre 45232 fnlimabslt 45237 dvnprodlem1 45504 stoweidlem16 45574 stoweidlem31 45589 stoweidlem34 45592 stoweidlem35 45593 stoweidlem48 45606 stoweidlem51 45609 stoweidlem53 45611 stoweidlem54 45612 stoweidlem57 45615 stoweidlem59 45617 fourierdlem31 45696 fourierdlem48 45712 fourierdlem51 45715 etransclem32 45824 ovncvrrp 46122 smflim 46335 smflimmpt 46368 smfsupmpt 46373 smfsupxr 46374 smfinfmpt 46377 smflimsuplem7 46384 |
Copyright terms: Public domain | W3C validator |