| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrabw | Structured version Visualization version GIF version | ||
| Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3434 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by NM, 13-Oct-2003.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Nov-2024.) |
| Ref | Expression |
|---|---|
| nfrabw.1 | ⊢ Ⅎ𝑥𝜑 |
| nfrabw.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfrabw | ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3395 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | nftru 1804 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
| 3 | nfrabw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | nfcri 2883 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 5 | nfrabw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 6 | 4, 5 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
| 8 | 2, 7 | nfabdw 2913 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
| 9 | 8 | mptru 1547 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
| 10 | 1, 9 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ⊤wtru 1541 Ⅎwnf 1783 ∈ wcel 2109 {cab 2707 Ⅎwnfc 2876 {crab 3394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3395 |
| This theorem is referenced by: nfdifOLD 4081 nfinOLD 4176 nfse 5593 elfvmptrab1w 6957 elovmporab 7595 elovmporab1w 7596 ovmpt3rab1 7607 elovmpt3rab1 7609 mpoxopoveq 8152 nfoi 9406 scottex 9781 elmptrab 23712 iundisjf 32533 nnindf 32765 fedgmullem2 33603 bnj1398 35007 bnj1445 35017 bnj1449 35021 nfwlim 35806 finminlem 36302 poimirlem26 37636 poimirlem27 37637 indexa 37723 nfscott 44222 binomcxplemdvbinom 44336 binomcxplemdvsum 44338 binomcxplemnotnn0 44339 infnsuprnmpt 45238 allbutfiinf 45409 supminfrnmpt 45434 supminfxrrnmpt 45460 fnlimfvre 45665 fnlimabslt 45670 dvnprodlem1 45937 stoweidlem16 46007 stoweidlem31 46022 stoweidlem34 46025 stoweidlem35 46026 stoweidlem48 46039 stoweidlem51 46042 stoweidlem53 46044 stoweidlem54 46045 stoweidlem57 46048 stoweidlem59 46050 fourierdlem31 46129 fourierdlem48 46145 fourierdlem51 46148 etransclem32 46257 ovncvrrp 46555 smflim 46768 smflimmpt 46801 smfsupmpt 46806 smfsupxr 46807 smfinfmpt 46810 smflimsuplem7 46817 |
| Copyright terms: Public domain | W3C validator |