![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrabw | Structured version Visualization version GIF version |
Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3475 with a disjoint variable condition, which does not require ax-13 2374. (Contributed by NM, 13-Oct-2003.) Avoid ax-13 2374. (Revised by GG, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Nov-2024.) |
Ref | Expression |
---|---|
nfrabw.1 | ⊢ Ⅎ𝑥𝜑 |
nfrabw.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrabw | ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3433 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
2 | nftru 1800 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
3 | nfrabw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | nfcri 2894 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
5 | nfrabw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
6 | 4, 5 | nfan 1896 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
8 | 2, 7 | nfabdw 2924 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
9 | 8 | mptru 1543 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
10 | 1, 9 | nfcxfr 2900 | 1 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ⊤wtru 1537 Ⅎwnf 1779 ∈ wcel 2105 {cab 2711 Ⅎwnfc 2887 {crab 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-rab 3433 |
This theorem is referenced by: nfdifOLD 4139 nfinOLD 4232 nfse 5662 elfvmptrab1w 7042 elovmporab 7678 elovmporab1w 7679 ovmpt3rab1 7690 elovmpt3rab1 7692 mpoxopoveq 8242 nfoi 9551 scottex 9922 elmptrab 23850 iundisjf 32608 nnindf 32825 fedgmullem2 33657 bnj1398 35026 bnj1445 35036 bnj1449 35040 nfwlim 35803 finminlem 36300 poimirlem26 37632 poimirlem27 37633 indexa 37719 nfscott 44234 binomcxplemdvbinom 44348 binomcxplemdvsum 44350 binomcxplemnotnn0 44351 infnsuprnmpt 45194 allbutfiinf 45369 supminfrnmpt 45394 supminfxrrnmpt 45420 fnlimfvre 45629 fnlimabslt 45634 dvnprodlem1 45901 stoweidlem16 45971 stoweidlem31 45986 stoweidlem34 45989 stoweidlem35 45990 stoweidlem48 46003 stoweidlem51 46006 stoweidlem53 46008 stoweidlem54 46009 stoweidlem57 46012 stoweidlem59 46014 fourierdlem31 46093 fourierdlem48 46109 fourierdlem51 46112 etransclem32 46221 ovncvrrp 46519 smflim 46732 smflimmpt 46765 smfsupmpt 46770 smfsupxr 46771 smfinfmpt 46774 smflimsuplem7 46781 |
Copyright terms: Public domain | W3C validator |