Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfrabw | Structured version Visualization version GIF version |
Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3440 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 13-Oct-2003.) Avoid ax-13 2371. (Revised by Gino Giotto, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Nov-2024.) |
Ref | Expression |
---|---|
nfrabw.1 | ⊢ Ⅎ𝑥𝜑 |
nfrabw.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrabw | ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3405 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
2 | nftru 1806 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
3 | nfrabw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | nfcri 2892 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
5 | nfrabw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
6 | 4, 5 | nfan 1902 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
8 | 2, 7 | nfabdw 2928 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
9 | 8 | mptru 1548 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
10 | 1, 9 | nfcxfr 2903 | 1 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ⊤wtru 1542 Ⅎwnf 1785 ∈ wcel 2106 {cab 2714 Ⅎwnfc 2885 {crab 3404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-rab 3405 |
This theorem is referenced by: nfdif 4077 nfin 4168 nfse 5600 elfvmptrab1w 6962 elovmporab 7582 elovmporab1w 7583 ovmpt3rab1 7594 elovmpt3rab1 7596 mpoxopoveq 8110 nfoi 9376 scottex 9747 elmptrab 23084 iundisjf 31213 nnindf 31418 fedgmullem2 32007 bnj1398 33311 bnj1445 33321 bnj1449 33325 nfwlim 34095 finminlem 34644 poimirlem26 35957 poimirlem27 35958 indexa 36045 nfscott 42228 binomcxplemdvbinom 42342 binomcxplemdvsum 42344 binomcxplemnotnn0 42345 infnsuprnmpt 43174 allbutfiinf 43345 supminfrnmpt 43370 supminfxrrnmpt 43396 fnlimfvre 43601 fnlimabslt 43606 dvnprodlem1 43873 stoweidlem16 43943 stoweidlem31 43958 stoweidlem34 43961 stoweidlem35 43962 stoweidlem48 43975 stoweidlem51 43978 stoweidlem53 43980 stoweidlem54 43981 stoweidlem57 43984 stoweidlem59 43986 fourierdlem31 44065 fourierdlem48 44081 fourierdlem51 44084 etransclem32 44193 ovncvrrp 44489 smflim 44702 smflimmpt 44735 smfsupmpt 44740 smfsupxr 44741 smfinfmpt 44744 smflimsuplem7 44751 |
Copyright terms: Public domain | W3C validator |