![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrabw | Structured version Visualization version GIF version |
Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3473 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 13-Oct-2003.) Avoid ax-13 2372. (Revised by Gino Giotto, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Nov-2024.) |
Ref | Expression |
---|---|
nfrabw.1 | ⊢ Ⅎ𝑥𝜑 |
nfrabw.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrabw | ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3434 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
2 | nftru 1807 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
3 | nfrabw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | nfcri 2891 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
5 | nfrabw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
6 | 4, 5 | nfan 1903 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
8 | 2, 7 | nfabdw 2927 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
9 | 8 | mptru 1549 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
10 | 1, 9 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ⊤wtru 1543 Ⅎwnf 1786 ∈ wcel 2107 {cab 2710 Ⅎwnfc 2884 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rab 3434 |
This theorem is referenced by: nfdif 4126 nfin 4217 nfse 5652 elfvmptrab1w 7025 elovmporab 7652 elovmporab1w 7653 ovmpt3rab1 7664 elovmpt3rab1 7666 mpoxopoveq 8204 nfoi 9509 scottex 9880 elmptrab 23331 iundisjf 31851 nnindf 32056 fedgmullem2 32746 bnj1398 34076 bnj1445 34086 bnj1449 34090 nfwlim 34825 finminlem 35251 poimirlem26 36562 poimirlem27 36563 indexa 36649 nfscott 43046 binomcxplemdvbinom 43160 binomcxplemdvsum 43162 binomcxplemnotnn0 43163 infnsuprnmpt 44002 allbutfiinf 44178 supminfrnmpt 44203 supminfxrrnmpt 44229 fnlimfvre 44438 fnlimabslt 44443 dvnprodlem1 44710 stoweidlem16 44780 stoweidlem31 44795 stoweidlem34 44798 stoweidlem35 44799 stoweidlem48 44812 stoweidlem51 44815 stoweidlem53 44817 stoweidlem54 44818 stoweidlem57 44821 stoweidlem59 44823 fourierdlem31 44902 fourierdlem48 44918 fourierdlem51 44921 etransclem32 45030 ovncvrrp 45328 smflim 45541 smflimmpt 45574 smfsupmpt 45579 smfsupxr 45580 smfinfmpt 45583 smflimsuplem7 45590 |
Copyright terms: Public domain | W3C validator |