| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrabw | Structured version Visualization version GIF version | ||
| Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3457 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by NM, 13-Oct-2003.) Avoid ax-13 2376. (Revised by GG, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Nov-2024.) |
| Ref | Expression |
|---|---|
| nfrabw.1 | ⊢ Ⅎ𝑥𝜑 |
| nfrabw.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfrabw | ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3416 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | nftru 1804 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
| 3 | nfrabw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | nfcri 2890 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 5 | nfrabw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 6 | 4, 5 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
| 8 | 2, 7 | nfabdw 2920 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
| 9 | 8 | mptru 1547 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
| 10 | 1, 9 | nfcxfr 2896 | 1 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ⊤wtru 1541 Ⅎwnf 1783 ∈ wcel 2108 {cab 2713 Ⅎwnfc 2883 {crab 3415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-rab 3416 |
| This theorem is referenced by: nfdifOLD 4105 nfinOLD 4200 nfse 5628 elfvmptrab1w 7012 elovmporab 7651 elovmporab1w 7652 ovmpt3rab1 7663 elovmpt3rab1 7665 mpoxopoveq 8216 nfoi 9526 scottex 9897 elmptrab 23763 iundisjf 32516 nnindf 32744 fedgmullem2 33616 bnj1398 35011 bnj1445 35021 bnj1449 35025 nfwlim 35786 finminlem 36282 poimirlem26 37616 poimirlem27 37617 indexa 37703 nfscott 44211 binomcxplemdvbinom 44325 binomcxplemdvsum 44327 binomcxplemnotnn0 44328 infnsuprnmpt 45222 allbutfiinf 45395 supminfrnmpt 45420 supminfxrrnmpt 45446 fnlimfvre 45651 fnlimabslt 45656 dvnprodlem1 45923 stoweidlem16 45993 stoweidlem31 46008 stoweidlem34 46011 stoweidlem35 46012 stoweidlem48 46025 stoweidlem51 46028 stoweidlem53 46030 stoweidlem54 46031 stoweidlem57 46034 stoweidlem59 46036 fourierdlem31 46115 fourierdlem48 46131 fourierdlem51 46134 etransclem32 46243 ovncvrrp 46541 smflim 46754 smflimmpt 46787 smfsupmpt 46792 smfsupxr 46793 smfinfmpt 46796 smflimsuplem7 46803 |
| Copyright terms: Public domain | W3C validator |