| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrabw | Structured version Visualization version GIF version | ||
| Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3448 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 13-Oct-2003.) Avoid ax-13 2371. (Revised by GG, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Nov-2024.) |
| Ref | Expression |
|---|---|
| nfrabw.1 | ⊢ Ⅎ𝑥𝜑 |
| nfrabw.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfrabw | ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3409 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | nftru 1804 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
| 3 | nfrabw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | nfcri 2884 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 5 | nfrabw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 6 | 4, 5 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
| 8 | 2, 7 | nfabdw 2914 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
| 9 | 8 | mptru 1547 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
| 10 | 1, 9 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ⊤wtru 1541 Ⅎwnf 1783 ∈ wcel 2109 {cab 2708 Ⅎwnfc 2877 {crab 3408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 |
| This theorem is referenced by: nfdifOLD 4096 nfinOLD 4191 nfse 5615 elfvmptrab1w 6998 elovmporab 7638 elovmporab1w 7639 ovmpt3rab1 7650 elovmpt3rab1 7652 mpoxopoveq 8201 nfoi 9474 scottex 9845 elmptrab 23721 iundisjf 32525 nnindf 32751 fedgmullem2 33633 bnj1398 35031 bnj1445 35041 bnj1449 35045 nfwlim 35817 finminlem 36313 poimirlem26 37647 poimirlem27 37648 indexa 37734 nfscott 44235 binomcxplemdvbinom 44349 binomcxplemdvsum 44351 binomcxplemnotnn0 44352 infnsuprnmpt 45251 allbutfiinf 45423 supminfrnmpt 45448 supminfxrrnmpt 45474 fnlimfvre 45679 fnlimabslt 45684 dvnprodlem1 45951 stoweidlem16 46021 stoweidlem31 46036 stoweidlem34 46039 stoweidlem35 46040 stoweidlem48 46053 stoweidlem51 46056 stoweidlem53 46058 stoweidlem54 46059 stoweidlem57 46062 stoweidlem59 46064 fourierdlem31 46143 fourierdlem48 46159 fourierdlem51 46162 etransclem32 46271 ovncvrrp 46569 smflim 46782 smflimmpt 46815 smfsupmpt 46820 smfsupxr 46821 smfinfmpt 46824 smflimsuplem7 46831 |
| Copyright terms: Public domain | W3C validator |