Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfrabw | Structured version Visualization version GIF version |
Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3320 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 13-Oct-2003.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Nov-2024.) |
Ref | Expression |
---|---|
nfrabw.1 | ⊢ Ⅎ𝑥𝜑 |
nfrabw.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrabw | ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3073 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
2 | nftru 1807 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
3 | nfrabw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | nfcri 2894 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
5 | nfrabw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
6 | 4, 5 | nfan 1902 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
8 | 2, 7 | nfabdw 2930 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
9 | 8 | mptru 1546 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
10 | 1, 9 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ⊤wtru 1540 Ⅎwnf 1786 ∈ wcel 2106 {cab 2715 Ⅎwnfc 2887 {crab 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 |
This theorem is referenced by: nfdif 4060 nfin 4150 nfse 5564 elfvmptrab1w 6901 elovmporab 7515 elovmporab1w 7516 ovmpt3rab1 7527 elovmpt3rab1 7529 mpoxopoveq 8035 nfoi 9273 scottex 9643 elmptrab 22978 iundisjf 30928 nnindf 31133 fedgmullem2 31711 bnj1398 33014 bnj1445 33024 bnj1449 33028 nfwlim 33816 finminlem 34507 poimirlem26 35803 poimirlem27 35804 indexa 35891 nfscott 41857 binomcxplemdvbinom 41971 binomcxplemdvsum 41973 binomcxplemnotnn0 41974 infnsuprnmpt 42796 allbutfiinf 42960 supminfrnmpt 42985 supminfxrrnmpt 43011 fnlimfvre 43215 fnlimabslt 43220 dvnprodlem1 43487 stoweidlem16 43557 stoweidlem31 43572 stoweidlem34 43575 stoweidlem35 43576 stoweidlem48 43589 stoweidlem51 43592 stoweidlem53 43594 stoweidlem54 43595 stoweidlem57 43598 stoweidlem59 43600 fourierdlem31 43679 fourierdlem48 43695 fourierdlem51 43698 etransclem32 43807 ovncvrrp 44102 smflim 44312 smflimmpt 44343 smfsupmpt 44348 smfsupxr 44349 smfinfmpt 44352 smflimsuplem7 44359 |
Copyright terms: Public domain | W3C validator |