| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrabw | Structured version Visualization version GIF version | ||
| Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3442 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by NM, 13-Oct-2003.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Nov-2024.) |
| Ref | Expression |
|---|---|
| nfrabw.1 | ⊢ Ⅎ𝑥𝜑 |
| nfrabw.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfrabw | ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3403 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | nftru 1804 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
| 3 | nfrabw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | nfcri 2883 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 5 | nfrabw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 6 | 4, 5 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
| 8 | 2, 7 | nfabdw 2913 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
| 9 | 8 | mptru 1547 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
| 10 | 1, 9 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ⊤wtru 1541 Ⅎwnf 1783 ∈ wcel 2109 {cab 2707 Ⅎwnfc 2876 {crab 3402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3403 |
| This theorem is referenced by: nfdifOLD 4089 nfinOLD 4184 nfse 5605 elfvmptrab1w 6977 elovmporab 7615 elovmporab1w 7616 ovmpt3rab1 7627 elovmpt3rab1 7629 mpoxopoveq 8175 nfoi 9443 scottex 9814 elmptrab 23747 iundisjf 32568 nnindf 32794 fedgmullem2 33619 bnj1398 35017 bnj1445 35027 bnj1449 35031 nfwlim 35803 finminlem 36299 poimirlem26 37633 poimirlem27 37634 indexa 37720 nfscott 44221 binomcxplemdvbinom 44335 binomcxplemdvsum 44337 binomcxplemnotnn0 44338 infnsuprnmpt 45237 allbutfiinf 45409 supminfrnmpt 45434 supminfxrrnmpt 45460 fnlimfvre 45665 fnlimabslt 45670 dvnprodlem1 45937 stoweidlem16 46007 stoweidlem31 46022 stoweidlem34 46025 stoweidlem35 46026 stoweidlem48 46039 stoweidlem51 46042 stoweidlem53 46044 stoweidlem54 46045 stoweidlem57 46048 stoweidlem59 46050 fourierdlem31 46129 fourierdlem48 46145 fourierdlem51 46148 etransclem32 46257 ovncvrrp 46555 smflim 46768 smflimmpt 46801 smfsupmpt 46806 smfsupxr 46807 smfinfmpt 46810 smflimsuplem7 46817 |
| Copyright terms: Public domain | W3C validator |