![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrabw | Structured version Visualization version GIF version |
Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3486 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by NM, 13-Oct-2003.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Nov-2024.) |
Ref | Expression |
---|---|
nfrabw.1 | ⊢ Ⅎ𝑥𝜑 |
nfrabw.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrabw | ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3444 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
2 | nftru 1802 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
3 | nfrabw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | nfcri 2900 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
5 | nfrabw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
6 | 4, 5 | nfan 1898 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
8 | 2, 7 | nfabdw 2932 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
9 | 8 | mptru 1544 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
10 | 1, 9 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ⊤wtru 1538 Ⅎwnf 1781 ∈ wcel 2108 {cab 2717 Ⅎwnfc 2893 {crab 3443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 |
This theorem is referenced by: nfdifOLD 4153 nfinOLD 4246 nfse 5674 elfvmptrab1w 7056 elovmporab 7696 elovmporab1w 7697 ovmpt3rab1 7708 elovmpt3rab1 7710 mpoxopoveq 8260 nfoi 9583 scottex 9954 elmptrab 23856 iundisjf 32611 nnindf 32823 fedgmullem2 33643 bnj1398 35010 bnj1445 35020 bnj1449 35024 nfwlim 35786 finminlem 36284 poimirlem26 37606 poimirlem27 37607 indexa 37693 nfscott 44208 binomcxplemdvbinom 44322 binomcxplemdvsum 44324 binomcxplemnotnn0 44325 infnsuprnmpt 45159 allbutfiinf 45335 supminfrnmpt 45360 supminfxrrnmpt 45386 fnlimfvre 45595 fnlimabslt 45600 dvnprodlem1 45867 stoweidlem16 45937 stoweidlem31 45952 stoweidlem34 45955 stoweidlem35 45956 stoweidlem48 45969 stoweidlem51 45972 stoweidlem53 45974 stoweidlem54 45975 stoweidlem57 45978 stoweidlem59 45980 fourierdlem31 46059 fourierdlem48 46075 fourierdlem51 46078 etransclem32 46187 ovncvrrp 46485 smflim 46698 smflimmpt 46731 smfsupmpt 46736 smfsupxr 46737 smfinfmpt 46740 smflimsuplem7 46747 |
Copyright terms: Public domain | W3C validator |