Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfrabw | Structured version Visualization version GIF version |
Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3312 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 13-Oct-2003.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfrabw.1 | ⊢ Ⅎ𝑥𝜑 |
nfrabw.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrabw | ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3072 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
2 | nftru 1808 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
3 | nfrabw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
4 | 3 | nfcri 2893 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
5 | 4 | a1i 11 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥 𝑦 ∈ 𝐴) |
6 | nfrabw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
7 | 6 | a1i 11 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥𝜑) |
8 | 5, 7 | nfand 1901 | . . . 4 ⊢ (⊤ → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
9 | 2, 8 | nfabdw 2929 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
10 | 9 | mptru 1546 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
11 | 1, 10 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ⊤wtru 1540 Ⅎwnf 1787 ∈ wcel 2108 {cab 2715 Ⅎwnfc 2886 {crab 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 |
This theorem is referenced by: nfdif 4056 nfin 4147 nfse 5555 elfvmptrab1w 6883 elovmporab 7493 elovmporab1w 7494 ovmpt3rab1 7505 elovmpt3rab1 7507 mpoxopoveq 8006 nfoi 9203 scottex 9574 elmptrab 22886 iundisjf 30829 nnindf 31035 fedgmullem2 31613 bnj1398 32914 bnj1445 32924 bnj1449 32928 nfwlim 33743 finminlem 34434 poimirlem26 35730 poimirlem27 35731 indexa 35818 nfscott 41746 binomcxplemdvbinom 41860 binomcxplemdvsum 41862 binomcxplemnotnn0 41863 infnsuprnmpt 42685 allbutfiinf 42850 supminfrnmpt 42875 supminfxrrnmpt 42901 fnlimfvre 43105 fnlimabslt 43110 dvnprodlem1 43377 stoweidlem16 43447 stoweidlem31 43462 stoweidlem34 43465 stoweidlem35 43466 stoweidlem48 43479 stoweidlem51 43482 stoweidlem53 43484 stoweidlem54 43485 stoweidlem57 43488 stoweidlem59 43490 fourierdlem31 43569 fourierdlem48 43585 fourierdlem51 43588 etransclem32 43697 ovncvrrp 43992 smflim 44199 smflimmpt 44230 smfsupmpt 44235 smfsupxr 44236 smfinfmpt 44239 smflimsuplem7 44246 |
Copyright terms: Public domain | W3C validator |