| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrabw | Structured version Visualization version GIF version | ||
| Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3445 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by NM, 13-Oct-2003.) Avoid ax-13 2370. (Revised by GG, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Nov-2024.) |
| Ref | Expression |
|---|---|
| nfrabw.1 | ⊢ Ⅎ𝑥𝜑 |
| nfrabw.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfrabw | ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3406 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | nftru 1804 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
| 3 | nfrabw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | nfcri 2883 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 5 | nfrabw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 6 | 4, 5 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
| 8 | 2, 7 | nfabdw 2913 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
| 9 | 8 | mptru 1547 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
| 10 | 1, 9 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ⊤wtru 1541 Ⅎwnf 1783 ∈ wcel 2109 {cab 2707 Ⅎwnfc 2876 {crab 3405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 |
| This theorem is referenced by: nfdifOLD 4093 nfinOLD 4188 nfse 5612 elfvmptrab1w 6995 elovmporab 7635 elovmporab1w 7636 ovmpt3rab1 7647 elovmpt3rab1 7649 mpoxopoveq 8198 nfoi 9467 scottex 9838 elmptrab 23714 iundisjf 32518 nnindf 32744 fedgmullem2 33626 bnj1398 35024 bnj1445 35034 bnj1449 35038 nfwlim 35810 finminlem 36306 poimirlem26 37640 poimirlem27 37641 indexa 37727 nfscott 44228 binomcxplemdvbinom 44342 binomcxplemdvsum 44344 binomcxplemnotnn0 44345 infnsuprnmpt 45244 allbutfiinf 45416 supminfrnmpt 45441 supminfxrrnmpt 45467 fnlimfvre 45672 fnlimabslt 45677 dvnprodlem1 45944 stoweidlem16 46014 stoweidlem31 46029 stoweidlem34 46032 stoweidlem35 46033 stoweidlem48 46046 stoweidlem51 46049 stoweidlem53 46051 stoweidlem54 46052 stoweidlem57 46055 stoweidlem59 46057 fourierdlem31 46136 fourierdlem48 46152 fourierdlem51 46155 etransclem32 46264 ovncvrrp 46562 smflim 46775 smflimmpt 46808 smfsupmpt 46813 smfsupxr 46814 smfinfmpt 46817 smflimsuplem7 46824 |
| Copyright terms: Public domain | W3C validator |