| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrabw | Structured version Visualization version GIF version | ||
| Description: A variable not free in a wff remains so in a restricted class abstraction. Version of nfrab 3434 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 13-Oct-2003.) Avoid ax-13 2372. (Revised by GG, 10-Jan-2024.) (Proof shortened by Wolf Lammen, 23-Nov-2024.) |
| Ref | Expression |
|---|---|
| nfrabw.1 | ⊢ Ⅎ𝑥𝜑 |
| nfrabw.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfrabw | ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3396 | . 2 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | nftru 1805 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
| 3 | nfrabw.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 3 | nfcri 2886 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 5 | nfrabw.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
| 6 | 4, 5 | nfan 1900 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (⊤ → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
| 8 | 2, 7 | nfabdw 2916 | . . 3 ⊢ (⊤ → Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)}) |
| 9 | 8 | mptru 1548 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∧ 𝜑)} |
| 10 | 1, 9 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ⊤wtru 1542 Ⅎwnf 1784 ∈ wcel 2111 {cab 2709 Ⅎwnfc 2879 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 |
| This theorem is referenced by: nfdifOLD 4077 nfinOLD 4172 nfse 5588 elfvmptrab1w 6956 elovmporab 7592 elovmporab1w 7593 ovmpt3rab1 7604 elovmpt3rab1 7606 mpoxopoveq 8149 nfoi 9400 scottex 9778 elmptrab 23742 iundisjf 32569 nnindf 32802 fedgmullem2 33643 bnj1398 35046 bnj1445 35056 bnj1449 35060 nfwlim 35864 finminlem 36362 poimirlem26 37685 poimirlem27 37686 indexa 37772 nfscott 44331 binomcxplemdvbinom 44445 binomcxplemdvsum 44447 binomcxplemnotnn0 44448 infnsuprnmpt 45346 allbutfiinf 45517 supminfrnmpt 45542 supminfxrrnmpt 45568 fnlimfvre 45771 fnlimabslt 45776 dvnprodlem1 46043 stoweidlem16 46113 stoweidlem31 46128 stoweidlem34 46131 stoweidlem35 46132 stoweidlem48 46145 stoweidlem51 46148 stoweidlem53 46150 stoweidlem54 46151 stoweidlem57 46154 stoweidlem59 46156 fourierdlem31 46235 fourierdlem48 46251 fourierdlem51 46254 etransclem32 46363 ovncvrrp 46661 smflim 46874 smflimmpt 46907 smfsupmpt 46912 smfsupxr 46913 smfinfmpt 46916 smflimsuplem7 46923 |
| Copyright terms: Public domain | W3C validator |