MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbi2dva Structured version   Visualization version   GIF version

Theorem rabbi2dva 4192
Description: Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.)
Hypothesis
Ref Expression
rabbi2dva.1 ((𝜑𝑥𝐴) → (𝑥𝐵𝜓))
Assertion
Ref Expression
rabbi2dva (𝜑 → (𝐴𝐵) = {𝑥𝐴𝜓})
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rabbi2dva
StepHypRef Expression
1 dfin5 3925 . 2 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
2 rabbi2dva.1 . . 3 ((𝜑𝑥𝐴) → (𝑥𝐵𝜓))
32rabbidva 3415 . 2 (𝜑 → {𝑥𝐴𝑥𝐵} = {𝑥𝐴𝜓})
41, 3eqtrid 2777 1 (𝜑 → (𝐴𝐵) = {𝑥𝐴𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  cin 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-rab 3409  df-in 3924
This theorem is referenced by:  fndmdif  7017  bitsshft  16452  sylow3lem2  19565  leordtvallem1  23104  leordtvallem2  23105  ordtt1  23273  xkoccn  23513  txcnmpt  23518  xkopt  23549  ordthmeolem  23695  qustgphaus  24017  itg2monolem1  25658  lhop1  25926  efopn  26574  dirith  27447  pjvec  31632  pjocvec  31633  neibastop3  36357  diarnN  41130
  Copyright terms: Public domain W3C validator