![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabbi2dva | Structured version Visualization version GIF version |
Description: Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.) |
Ref | Expression |
---|---|
rabbi2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabbi2dva | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin5 3984 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} | |
2 | rabbi2dva.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) | |
3 | 2 | rabbidva 3450 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
4 | 1, 3 | eqtrid 2792 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {crab 3443 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-rab 3444 df-in 3983 |
This theorem is referenced by: fndmdif 7075 bitsshft 16521 sylow3lem2 19670 leordtvallem1 23239 leordtvallem2 23240 ordtt1 23408 xkoccn 23648 txcnmpt 23653 xkopt 23684 ordthmeolem 23830 qustgphaus 24152 itg2monolem1 25805 lhop1 26073 efopn 26718 dirith 27591 pjvec 31728 pjocvec 31729 neibastop3 36328 diarnN 41086 |
Copyright terms: Public domain | W3C validator |