| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbi2dva | Structured version Visualization version GIF version | ||
| Description: Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.) |
| Ref | Expression |
|---|---|
| rabbi2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rabbi2dva | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin5 3906 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} | |
| 2 | rabbi2dva.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) | |
| 3 | 2 | rabbidva 3402 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| 4 | 1, 3 | eqtrid 2780 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 ∩ cin 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-rab 3397 df-in 3905 |
| This theorem is referenced by: fndmdif 6983 bitsshft 16390 sylow3lem2 19544 leordtvallem1 23128 leordtvallem2 23129 ordtt1 23297 xkoccn 23537 txcnmpt 23542 xkopt 23573 ordthmeolem 23719 qustgphaus 24041 itg2monolem1 25681 lhop1 25949 efopn 26597 dirith 27470 pjvec 31680 pjocvec 31681 neibastop3 36429 diarnN 41251 |
| Copyright terms: Public domain | W3C validator |