| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbi2dva | Structured version Visualization version GIF version | ||
| Description: Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.) |
| Ref | Expression |
|---|---|
| rabbi2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rabbi2dva | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin5 3910 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} | |
| 2 | rabbi2dva.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) | |
| 3 | 2 | rabbidva 3401 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| 4 | 1, 3 | eqtrid 2778 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ∩ cin 3901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-rab 3396 df-in 3909 |
| This theorem is referenced by: fndmdif 6975 bitsshft 16386 sylow3lem2 19541 leordtvallem1 23126 leordtvallem2 23127 ordtt1 23295 xkoccn 23535 txcnmpt 23540 xkopt 23571 ordthmeolem 23717 qustgphaus 24039 itg2monolem1 25679 lhop1 25947 efopn 26595 dirith 27468 pjvec 31674 pjocvec 31675 neibastop3 36402 diarnN 41174 |
| Copyright terms: Public domain | W3C validator |