| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbi2dva | Structured version Visualization version GIF version | ||
| Description: Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.) |
| Ref | Expression |
|---|---|
| rabbi2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rabbi2dva | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfin5 3934 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} | |
| 2 | rabbi2dva.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) | |
| 3 | 2 | rabbidva 3422 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| 4 | 1, 3 | eqtrid 2782 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 ∩ cin 3925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-rab 3416 df-in 3933 |
| This theorem is referenced by: fndmdif 7032 bitsshft 16494 sylow3lem2 19609 leordtvallem1 23148 leordtvallem2 23149 ordtt1 23317 xkoccn 23557 txcnmpt 23562 xkopt 23593 ordthmeolem 23739 qustgphaus 24061 itg2monolem1 25703 lhop1 25971 efopn 26619 dirith 27492 pjvec 31677 pjocvec 31678 neibastop3 36380 diarnN 41148 |
| Copyright terms: Public domain | W3C validator |