Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbi2dva Structured version   Visualization version   GIF version

Theorem rabbi2dva 4177
 Description: Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.)
Hypothesis
Ref Expression
rabbi2dva.1 ((𝜑𝑥𝐴) → (𝑥𝐵𝜓))
Assertion
Ref Expression
rabbi2dva (𝜑 → (𝐴𝐵) = {𝑥𝐴𝜓})
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rabbi2dva
StepHypRef Expression
1 dfin5 3926 . 2 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
2 rabbi2dva.1 . . 3 ((𝜑𝑥𝐴) → (𝑥𝐵𝜓))
32rabbidva 3463 . 2 (𝜑 → {𝑥𝐴𝑥𝐵} = {𝑥𝐴𝜓})
41, 3syl5eq 2871 1 (𝜑 → (𝐴𝐵) = {𝑥𝐴𝜓})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  {crab 3136   ∩ cin 3917 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-9 2125  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-rab 3141  df-in 3925 This theorem is referenced by:  fndmdif  6793  bitsshft  15811  sylow3lem2  18742  leordtvallem1  21804  leordtvallem2  21805  ordtt1  21973  xkoccn  22213  txcnmpt  22218  xkopt  22249  ordthmeolem  22395  qustgphaus  22717  itg2monolem1  24343  lhop1  24606  efopn  25238  dirith  26102  pjvec  29468  pjocvec  29469  neibastop3  33728  diarnN  38325
 Copyright terms: Public domain W3C validator