MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbi2dva Structured version   Visualization version   GIF version

Theorem rabbi2dva 4189
Description: Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.)
Hypothesis
Ref Expression
rabbi2dva.1 ((𝜑𝑥𝐴) → (𝑥𝐵𝜓))
Assertion
Ref Expression
rabbi2dva (𝜑 → (𝐴𝐵) = {𝑥𝐴𝜓})
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rabbi2dva
StepHypRef Expression
1 dfin5 3922 . 2 (𝐴𝐵) = {𝑥𝐴𝑥𝐵}
2 rabbi2dva.1 . . 3 ((𝜑𝑥𝐴) → (𝑥𝐵𝜓))
32rabbidva 3412 . 2 (𝜑 → {𝑥𝐴𝑥𝐵} = {𝑥𝐴𝜓})
41, 3eqtrid 2776 1 (𝜑 → (𝐴𝐵) = {𝑥𝐴𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3405  cin 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-rab 3406  df-in 3921
This theorem is referenced by:  fndmdif  7014  bitsshft  16445  sylow3lem2  19558  leordtvallem1  23097  leordtvallem2  23098  ordtt1  23266  xkoccn  23506  txcnmpt  23511  xkopt  23542  ordthmeolem  23688  qustgphaus  24010  itg2monolem1  25651  lhop1  25919  efopn  26567  dirith  27440  pjvec  31625  pjocvec  31626  neibastop3  36350  diarnN  41123
  Copyright terms: Public domain W3C validator