![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabbi2dva | Structured version Visualization version GIF version |
Description: Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.) |
Ref | Expression |
---|---|
rabbi2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) |
Ref | Expression |
---|---|
rabbi2dva | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin5 3956 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} | |
2 | rabbi2dva.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) | |
3 | 2 | rabbidva 3438 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
4 | 1, 3 | eqtrid 2783 | 1 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 {crab 3431 ∩ cin 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-rab 3432 df-in 3955 |
This theorem is referenced by: fndmdif 7043 bitsshft 16423 sylow3lem2 19544 leordtvallem1 23033 leordtvallem2 23034 ordtt1 23202 xkoccn 23442 txcnmpt 23447 xkopt 23478 ordthmeolem 23624 qustgphaus 23946 itg2monolem1 25599 lhop1 25866 efopn 26505 dirith 27374 pjvec 31381 pjocvec 31382 neibastop3 35710 diarnN 40463 |
Copyright terms: Public domain | W3C validator |