MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfin Structured version   Visualization version   GIF version

Theorem nfin 4223
Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2140, ax-11 2156, ax-12 2176. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfin.1 𝑥𝐴
nfin.2 𝑥𝐵
Assertion
Ref Expression
nfin 𝑥(𝐴𝐵)

Proof of Theorem nfin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elin 3966 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
2 nfin.1 . . . . 5 𝑥𝐴
32nfcri 2896 . . . 4 𝑥 𝑦𝐴
4 nfin.2 . . . . 5 𝑥𝐵
54nfcri 2896 . . . 4 𝑥 𝑦𝐵
63, 5nfan 1898 . . 3 𝑥(𝑦𝐴𝑦𝐵)
71, 6nfxfr 1852 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
87nfci 2892 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2107  wnfc 2889  cin 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-v 3481  df-in 3957
This theorem is referenced by:  inn0f  4370  csbin  4441  iunxdif3  5094  disjxun  5140  nfres  5998  nfpred  6325  cp  9932  tskwe  9991  iunconn  23437  ptclsg  23624  restmetu  24584  limciun  25930  disjunsn  32608  ordtconnlem1  33924  esum2d  34095  finminlem  36320  bj-rcleqf  37027  mbfposadd  37675  iunconnlem2  44960  disjrnmpt2  45198  disjinfi  45202  fsumiunss  45595  stoweidlem57  46077  fourierdlem80  46206  sge0iunmptlemre  46435  iundjiun  46480  pimiooltgt  46730  smflim  46797  smfpimcclem  46827  smfpimcc  46828  adddmmbl  46853  adddmmbl2  46854  muldmmbl  46855  muldmmbl2  46856  smfdivdmmbl2  46861
  Copyright terms: Public domain W3C validator