| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfin | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfin.1 | ⊢ Ⅎ𝑥𝐴 |
| nfin.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfin | ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3927 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | nfin.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfin.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 6 | 3, 5 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 7 | 1, 6 | nfxfr 1853 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∩ 𝐵) |
| 8 | 7 | nfci 2879 | 1 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Ⅎwnfc 2876 ∩ cin 3910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3446 df-in 3918 |
| This theorem is referenced by: inn0f 4330 csbin 4401 iunxdif3 5054 disjxun 5100 nfres 5941 nfpred 6267 cp 9820 tskwe 9879 iunconn 23291 ptclsg 23478 restmetu 24434 limciun 25771 disjunsn 32496 ordtconnlem1 33887 esum2d 34056 finminlem 36279 bj-rcleqf 36986 mbfposadd 37634 iunconnlem2 44897 disjrnmpt2 45155 disjinfi 45159 fsumiunss 45546 stoweidlem57 46028 fourierdlem80 46157 sge0iunmptlemre 46386 iundjiun 46431 pimiooltgt 46681 smflim 46748 smfpimcclem 46778 smfpimcc 46779 adddmmbl 46804 adddmmbl2 46805 muldmmbl 46806 muldmmbl2 46807 smfdivdmmbl2 46812 |
| Copyright terms: Public domain | W3C validator |