MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfin Structured version   Visualization version   GIF version

Theorem nfin 4183
Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfin.1 𝑥𝐴
nfin.2 𝑥𝐵
Assertion
Ref Expression
nfin 𝑥(𝐴𝐵)

Proof of Theorem nfin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elin 3927 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
2 nfin.1 . . . . 5 𝑥𝐴
32nfcri 2883 . . . 4 𝑥 𝑦𝐴
4 nfin.2 . . . . 5 𝑥𝐵
54nfcri 2883 . . . 4 𝑥 𝑦𝐵
63, 5nfan 1899 . . 3 𝑥(𝑦𝐴𝑦𝐵)
71, 6nfxfr 1853 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
87nfci 2879 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wnfc 2876  cin 3910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-v 3446  df-in 3918
This theorem is referenced by:  inn0f  4330  csbin  4401  iunxdif3  5054  disjxun  5100  nfres  5941  nfpred  6267  cp  9820  tskwe  9879  iunconn  23291  ptclsg  23478  restmetu  24434  limciun  25771  disjunsn  32496  ordtconnlem1  33887  esum2d  34056  finminlem  36279  bj-rcleqf  36986  mbfposadd  37634  iunconnlem2  44897  disjrnmpt2  45155  disjinfi  45159  fsumiunss  45546  stoweidlem57  46028  fourierdlem80  46157  sge0iunmptlemre  46386  iundjiun  46431  pimiooltgt  46681  smflim  46748  smfpimcclem  46778  smfpimcc  46779  adddmmbl  46804  adddmmbl2  46805  muldmmbl  46806  muldmmbl2  46807  smfdivdmmbl2  46812
  Copyright terms: Public domain W3C validator