| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfin | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfin.1 | ⊢ Ⅎ𝑥𝐴 |
| nfin.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfin | ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3947 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | nfin.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfin.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 6 | 3, 5 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 7 | 1, 6 | nfxfr 1853 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∩ 𝐵) |
| 8 | 7 | nfci 2887 | 1 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Ⅎwnfc 2884 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-v 3466 df-in 3938 |
| This theorem is referenced by: inn0f 4351 csbin 4422 iunxdif3 5076 disjxun 5122 nfres 5973 nfpred 6300 cp 9910 tskwe 9969 iunconn 23371 ptclsg 23558 restmetu 24514 limciun 25852 disjunsn 32580 ordtconnlem1 33960 esum2d 34129 finminlem 36341 bj-rcleqf 37048 mbfposadd 37696 iunconnlem2 44926 disjrnmpt2 45179 disjinfi 45183 fsumiunss 45571 stoweidlem57 46053 fourierdlem80 46182 sge0iunmptlemre 46411 iundjiun 46456 pimiooltgt 46706 smflim 46773 smfpimcclem 46803 smfpimcc 46804 adddmmbl 46829 adddmmbl2 46830 muldmmbl 46831 muldmmbl2 46832 smfdivdmmbl2 46837 |
| Copyright terms: Public domain | W3C validator |