MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfin Structured version   Visualization version   GIF version

Theorem nfin 4232
Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2139, ax-11 2155, ax-12 2175. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfin.1 𝑥𝐴
nfin.2 𝑥𝐵
Assertion
Ref Expression
nfin 𝑥(𝐴𝐵)

Proof of Theorem nfin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elin 3979 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
2 nfin.1 . . . . 5 𝑥𝐴
32nfcri 2895 . . . 4 𝑥 𝑦𝐴
4 nfin.2 . . . . 5 𝑥𝐵
54nfcri 2895 . . . 4 𝑥 𝑦𝐵
63, 5nfan 1897 . . 3 𝑥(𝑦𝐴𝑦𝐵)
71, 6nfxfr 1850 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
87nfci 2891 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2106  wnfc 2888  cin 3962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-v 3480  df-in 3970
This theorem is referenced by:  inn0f  4377  csbin  4448  iunxdif3  5100  disjxun  5146  nfres  6002  nfpred  6328  cp  9929  tskwe  9988  iunconn  23452  ptclsg  23639  restmetu  24599  limciun  25944  disjunsn  32614  ordtconnlem1  33885  esum2d  34074  finminlem  36301  bj-rcleqf  37008  mbfposadd  37654  iunconnlem2  44933  disjrnmpt2  45131  disjinfi  45135  fsumiunss  45531  stoweidlem57  46013  fourierdlem80  46142  sge0iunmptlemre  46371  iundjiun  46416  pimiooltgt  46666  smflim  46733  smfpimcclem  46763  smfpimcc  46764  adddmmbl  46789  adddmmbl2  46790  muldmmbl  46791  muldmmbl2  46792  smfdivdmmbl2  46797
  Copyright terms: Public domain W3C validator