MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfin Structured version   Visualization version   GIF version

Theorem nfin 4204
Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfin.1 𝑥𝐴
nfin.2 𝑥𝐵
Assertion
Ref Expression
nfin 𝑥(𝐴𝐵)

Proof of Theorem nfin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elin 3947 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
2 nfin.1 . . . . 5 𝑥𝐴
32nfcri 2891 . . . 4 𝑥 𝑦𝐴
4 nfin.2 . . . . 5 𝑥𝐵
54nfcri 2891 . . . 4 𝑥 𝑦𝐵
63, 5nfan 1899 . . 3 𝑥(𝑦𝐴𝑦𝐵)
71, 6nfxfr 1853 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
87nfci 2887 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wnfc 2884  cin 3930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-v 3466  df-in 3938
This theorem is referenced by:  inn0f  4351  csbin  4422  iunxdif3  5076  disjxun  5122  nfres  5973  nfpred  6300  cp  9910  tskwe  9969  iunconn  23371  ptclsg  23558  restmetu  24514  limciun  25852  disjunsn  32580  ordtconnlem1  33960  esum2d  34129  finminlem  36341  bj-rcleqf  37048  mbfposadd  37696  iunconnlem2  44926  disjrnmpt2  45179  disjinfi  45183  fsumiunss  45571  stoweidlem57  46053  fourierdlem80  46182  sge0iunmptlemre  46411  iundjiun  46456  pimiooltgt  46706  smflim  46773  smfpimcclem  46803  smfpimcc  46804  adddmmbl  46829  adddmmbl2  46830  muldmmbl  46831  muldmmbl2  46832  smfdivdmmbl2  46837
  Copyright terms: Public domain W3C validator