Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfin | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfin.1 | ⊢ Ⅎ𝑥𝐴 |
nfin.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfin | ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin5 3904 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑦 ∈ 𝐴 ∣ 𝑦 ∈ 𝐵} | |
2 | nfin.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
3 | 2 | nfcri 2891 | . . 3 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
4 | nfin.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
5 | 3, 4 | nfrabw 3435 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝑦 ∈ 𝐵} |
6 | 1, 5 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Ⅎwnfc 2884 {crab 3403 ∩ cin 3895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-rab 3404 df-in 3903 |
This theorem is referenced by: csbin 4383 iunxdif3 5036 disjxun 5084 nfres 5912 nfpred 6229 cp 9726 tskwe 9785 iunconn 22659 ptclsg 22846 restmetu 23806 limciun 25138 disjunsn 31064 ordtconnlem1 32010 esum2d 32197 finminlem 34577 bj-rcleqf 35283 mbfposadd 35901 iunconnlem2 42794 inn0f 42860 disjrnmpt2 42972 disjinfi 42977 fsumiunss 43371 stoweidlem57 43853 fourierdlem80 43982 sge0iunmptlemre 44209 iundjiun 44254 pimiooltgt 44504 smflim 44571 smfpimcclem 44601 smfpimcc 44602 adddmmbl 44627 adddmmbl2 44628 muldmmbl 44629 muldmmbl2 44630 smfdivdmmbl2 44635 |
Copyright terms: Public domain | W3C validator |