MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfin Structured version   Visualization version   GIF version

Theorem nfin 4190
Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfin.1 𝑥𝐴
nfin.2 𝑥𝐵
Assertion
Ref Expression
nfin 𝑥(𝐴𝐵)

Proof of Theorem nfin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elin 3933 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
2 nfin.1 . . . . 5 𝑥𝐴
32nfcri 2884 . . . 4 𝑥 𝑦𝐴
4 nfin.2 . . . . 5 𝑥𝐵
54nfcri 2884 . . . 4 𝑥 𝑦𝐵
63, 5nfan 1899 . . 3 𝑥(𝑦𝐴𝑦𝐵)
71, 6nfxfr 1853 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
87nfci 2880 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wnfc 2877  cin 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-v 3452  df-in 3924
This theorem is referenced by:  inn0f  4337  csbin  4408  iunxdif3  5062  disjxun  5108  nfres  5955  nfpred  6282  cp  9851  tskwe  9910  iunconn  23322  ptclsg  23509  restmetu  24465  limciun  25802  disjunsn  32530  ordtconnlem1  33921  esum2d  34090  finminlem  36313  bj-rcleqf  37020  mbfposadd  37668  iunconnlem2  44931  disjrnmpt2  45189  disjinfi  45193  fsumiunss  45580  stoweidlem57  46062  fourierdlem80  46191  sge0iunmptlemre  46420  iundjiun  46465  pimiooltgt  46715  smflim  46782  smfpimcclem  46812  smfpimcc  46813  adddmmbl  46838  adddmmbl2  46839  muldmmbl  46840  muldmmbl2  46841  smfdivdmmbl2  46846
  Copyright terms: Public domain W3C validator