![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfin | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfin.1 | ⊢ Ⅎ𝑥𝐴 |
nfin.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfin | ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin5 3957 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑦 ∈ 𝐴 ∣ 𝑦 ∈ 𝐵} | |
2 | nfin.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
3 | 2 | nfcri 2888 | . . 3 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
4 | nfin.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
5 | 3, 4 | nfrabw 3466 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝑦 ∈ 𝐵} |
6 | 1, 5 | nfcxfr 2899 | 1 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 Ⅎwnfc 2881 {crab 3430 ∩ cin 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-rab 3431 df-in 3956 |
This theorem is referenced by: csbin 4440 iunxdif3 5099 disjxun 5147 nfres 5984 nfpred 6306 cp 9890 tskwe 9949 iunconn 23154 ptclsg 23341 restmetu 24301 limciun 25645 disjunsn 32090 ordtconnlem1 33200 esum2d 33387 finminlem 35508 bj-rcleqf 36211 mbfposadd 36840 iunconnlem2 44000 inn0f 44063 disjrnmpt2 44187 disjinfi 44191 fsumiunss 44591 stoweidlem57 45073 fourierdlem80 45202 sge0iunmptlemre 45431 iundjiun 45476 pimiooltgt 45726 smflim 45793 smfpimcclem 45823 smfpimcc 45824 adddmmbl 45849 adddmmbl2 45850 muldmmbl 45851 muldmmbl2 45852 smfdivdmmbl2 45857 |
Copyright terms: Public domain | W3C validator |