Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfin | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfin.1 | ⊢ Ⅎ𝑥𝐴 |
nfin.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfin | ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin5 3891 | . 2 ⊢ (𝐴 ∩ 𝐵) = {𝑦 ∈ 𝐴 ∣ 𝑦 ∈ 𝐵} | |
2 | nfin.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
3 | 2 | nfcri 2893 | . . 3 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
4 | nfin.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
5 | 3, 4 | nfrabw 3311 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ 𝑦 ∈ 𝐵} |
6 | 1, 5 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Ⅎwnfc 2886 {crab 3067 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-in 3890 |
This theorem is referenced by: csbin 4370 iunxdif3 5020 disjxun 5068 nfres 5882 nfpred 6196 cp 9580 tskwe 9639 iunconn 22487 ptclsg 22674 restmetu 23632 limciun 24963 disjunsn 30834 ordtconnlem1 31776 esum2d 31961 finminlem 34434 bj-rcleqf 35142 mbfposadd 35751 iunconnlem2 42444 inn0f 42510 disjrnmpt2 42615 disjinfi 42620 fsumiunss 43006 stoweidlem57 43488 fourierdlem80 43617 sge0iunmptlemre 43843 iundjiun 43888 pimiooltgt 44135 smflim 44199 smfpimcclem 44227 smfpimcc 44228 |
Copyright terms: Public domain | W3C validator |