![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfin | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2141, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.) |
Ref | Expression |
---|---|
nfin.1 | ⊢ Ⅎ𝑥𝐴 |
nfin.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfin | ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3992 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
2 | nfin.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2900 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfin.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2900 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
6 | 3, 5 | nfan 1898 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
7 | 1, 6 | nfxfr 1851 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∩ 𝐵) |
8 | 7 | nfci 2896 | 1 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 Ⅎwnfc 2893 ∩ cin 3975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-v 3490 df-in 3983 |
This theorem is referenced by: inn0f 4394 csbin 4465 iunxdif3 5118 disjxun 5164 nfres 6011 nfpred 6337 cp 9960 tskwe 10019 iunconn 23457 ptclsg 23644 restmetu 24604 limciun 25949 disjunsn 32616 ordtconnlem1 33870 esum2d 34057 finminlem 36284 bj-rcleqf 36991 mbfposadd 37627 iunconnlem2 44906 disjrnmpt2 45095 disjinfi 45099 fsumiunss 45496 stoweidlem57 45978 fourierdlem80 46107 sge0iunmptlemre 46336 iundjiun 46381 pimiooltgt 46631 smflim 46698 smfpimcclem 46728 smfpimcc 46729 adddmmbl 46754 adddmmbl2 46755 muldmmbl 46756 muldmmbl2 46757 smfdivdmmbl2 46762 |
Copyright terms: Public domain | W3C validator |