![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfin | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2139, ax-11 2155, ax-12 2175. (Revised by SN, 14-May-2025.) |
Ref | Expression |
---|---|
nfin.1 | ⊢ Ⅎ𝑥𝐴 |
nfin.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfin | ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3979 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
2 | nfin.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2895 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfin.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2895 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
6 | 3, 5 | nfan 1897 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
7 | 1, 6 | nfxfr 1850 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∩ 𝐵) |
8 | 7 | nfci 2891 | 1 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2106 Ⅎwnfc 2888 ∩ cin 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-v 3480 df-in 3970 |
This theorem is referenced by: inn0f 4377 csbin 4448 iunxdif3 5100 disjxun 5146 nfres 6002 nfpred 6328 cp 9929 tskwe 9988 iunconn 23452 ptclsg 23639 restmetu 24599 limciun 25944 disjunsn 32614 ordtconnlem1 33885 esum2d 34074 finminlem 36301 bj-rcleqf 37008 mbfposadd 37654 iunconnlem2 44933 disjrnmpt2 45131 disjinfi 45135 fsumiunss 45531 stoweidlem57 46013 fourierdlem80 46142 sge0iunmptlemre 46371 iundjiun 46416 pimiooltgt 46666 smflim 46733 smfpimcclem 46763 smfpimcc 46764 adddmmbl 46789 adddmmbl2 46790 muldmmbl 46791 muldmmbl2 46792 smfdivdmmbl2 46797 |
Copyright terms: Public domain | W3C validator |