MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfin Structured version   Visualization version   GIF version

Theorem nfin 4150
Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfin.1 𝑥𝐴
nfin.2 𝑥𝐵
Assertion
Ref Expression
nfin 𝑥(𝐴𝐵)

Proof of Theorem nfin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfin5 3895 . 2 (𝐴𝐵) = {𝑦𝐴𝑦𝐵}
2 nfin.2 . . . 4 𝑥𝐵
32nfcri 2894 . . 3 𝑥 𝑦𝐵
4 nfin.1 . . 3 𝑥𝐴
53, 4nfrabw 3318 . 2 𝑥{𝑦𝐴𝑦𝐵}
61, 5nfcxfr 2905 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wnfc 2887  {crab 3068  cin 3886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rab 3073  df-in 3894
This theorem is referenced by:  csbin  4373  iunxdif3  5024  disjxun  5072  nfres  5893  nfpred  6207  cp  9649  tskwe  9708  iunconn  22579  ptclsg  22766  restmetu  23726  limciun  25058  disjunsn  30933  ordtconnlem1  31874  esum2d  32061  finminlem  34507  bj-rcleqf  35215  mbfposadd  35824  iunconnlem2  42555  inn0f  42621  disjrnmpt2  42726  disjinfi  42731  fsumiunss  43116  stoweidlem57  43598  fourierdlem80  43727  sge0iunmptlemre  43953  iundjiun  43998  pimiooltgt  44247  smflim  44312  smfpimcclem  44340  smfpimcc  44341
  Copyright terms: Public domain W3C validator