|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nfin | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2140, ax-11 2156, ax-12 2176. (Revised by SN, 14-May-2025.) | 
| Ref | Expression | 
|---|---|
| nfin.1 | ⊢ Ⅎ𝑥𝐴 | 
| nfin.2 | ⊢ Ⅎ𝑥𝐵 | 
| Ref | Expression | 
|---|---|
| nfin | ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elin 3966 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | nfin.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2896 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | 
| 4 | nfin.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2896 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 | 
| 6 | 3, 5 | nfan 1898 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) | 
| 7 | 1, 6 | nfxfr 1852 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∩ 𝐵) | 
| 8 | 7 | nfci 2892 | 1 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∧ wa 395 ∈ wcel 2107 Ⅎwnfc 2889 ∩ cin 3949 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-v 3481 df-in 3957 | 
| This theorem is referenced by: inn0f 4370 csbin 4441 iunxdif3 5094 disjxun 5140 nfres 5998 nfpred 6325 cp 9932 tskwe 9991 iunconn 23437 ptclsg 23624 restmetu 24584 limciun 25930 disjunsn 32608 ordtconnlem1 33924 esum2d 34095 finminlem 36320 bj-rcleqf 37027 mbfposadd 37675 iunconnlem2 44960 disjrnmpt2 45198 disjinfi 45202 fsumiunss 45595 stoweidlem57 46077 fourierdlem80 46206 sge0iunmptlemre 46435 iundjiun 46480 pimiooltgt 46730 smflim 46797 smfpimcclem 46827 smfpimcc 46828 adddmmbl 46853 adddmmbl2 46854 muldmmbl 46855 muldmmbl2 46856 smfdivdmmbl2 46861 | 
| Copyright terms: Public domain | W3C validator |