MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfin Structured version   Visualization version   GIF version

Theorem nfin 4171
Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2144, ax-11 2160, ax-12 2180. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfin.1 𝑥𝐴
nfin.2 𝑥𝐵
Assertion
Ref Expression
nfin 𝑥(𝐴𝐵)

Proof of Theorem nfin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elin 3913 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
2 nfin.1 . . . . 5 𝑥𝐴
32nfcri 2886 . . . 4 𝑥 𝑦𝐴
4 nfin.2 . . . . 5 𝑥𝐵
54nfcri 2886 . . . 4 𝑥 𝑦𝐵
63, 5nfan 1900 . . 3 𝑥(𝑦𝐴𝑦𝐵)
71, 6nfxfr 1854 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
87nfci 2882 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2111  wnfc 2879  cin 3896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-v 3438  df-in 3904
This theorem is referenced by:  inn0f  4318  csbin  4389  iunxdif3  5041  disjxun  5087  nfres  5929  nfpred  6253  cp  9784  tskwe  9843  iunconn  23343  ptclsg  23530  restmetu  24485  limciun  25822  disjunsn  32574  ordtconnlem1  33937  esum2d  34106  finminlem  36362  bj-rcleqf  37069  mbfposadd  37717  iunconnlem2  45037  disjrnmpt2  45295  disjinfi  45299  fsumiunss  45685  stoweidlem57  46165  fourierdlem80  46294  sge0iunmptlemre  46523  iundjiun  46568  pimiooltgt  46818  smflim  46885  smfpimcclem  46915  smfpimcc  46916  adddmmbl  46941  adddmmbl2  46942  muldmmbl  46943  muldmmbl2  46944  smfdivdmmbl2  46949
  Copyright terms: Public domain W3C validator