| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfin | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfin.1 | ⊢ Ⅎ𝑥𝐴 |
| nfin.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfin | ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3919 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | nfin.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfin.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 6 | 3, 5 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) |
| 7 | 1, 6 | nfxfr 1853 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∩ 𝐵) |
| 8 | 7 | nfci 2879 | 1 ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Ⅎwnfc 2876 ∩ cin 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3438 df-in 3910 |
| This theorem is referenced by: inn0f 4322 csbin 4393 iunxdif3 5044 disjxun 5090 nfres 5932 nfpred 6254 cp 9787 tskwe 9846 iunconn 23313 ptclsg 23500 restmetu 24456 limciun 25793 disjunsn 32538 ordtconnlem1 33891 esum2d 34060 finminlem 36292 bj-rcleqf 36999 mbfposadd 37647 iunconnlem2 44908 disjrnmpt2 45166 disjinfi 45170 fsumiunss 45556 stoweidlem57 46038 fourierdlem80 46167 sge0iunmptlemre 46396 iundjiun 46441 pimiooltgt 46691 smflim 46758 smfpimcclem 46788 smfpimcc 46789 adddmmbl 46814 adddmmbl2 46815 muldmmbl 46816 muldmmbl2 46817 smfdivdmmbl2 46822 |
| Copyright terms: Public domain | W3C validator |