MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiu1OLD Structured version   Visualization version   GIF version

Theorem nfiu1OLD 5033
Description: Obsolete version of nfiu1 5032 as of 14-May-2025. (Contributed by NM, 12-Oct-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfiu1OLD 𝑥 𝑥𝐴 𝐵

Proof of Theorem nfiu1OLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4998 . 2 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
2 nfre1 3283 . . 3 𝑥𝑥𝐴 𝑦𝐵
32nfab 2909 . 2 𝑥{𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
41, 3nfcxfr 2901 1 𝑥 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  {cab 2712  wnfc 2888  wrex 3068   ciun 4996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-rex 3069  df-iun 4998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator