MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiu1OLD Structured version   Visualization version   GIF version

Theorem nfiu1OLD 4976
Description: Obsolete version of nfiu1 4975 as of 14-May-2025. (Contributed by NM, 12-Oct-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfiu1OLD 𝑥 𝑥𝐴 𝐵

Proof of Theorem nfiu1OLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4941 . 2 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
2 nfre1 3257 . . 3 𝑥𝑥𝐴 𝑦𝐵
32nfab 2900 . 2 𝑥{𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
41, 3nfcxfr 2892 1 𝑥 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  {cab 2709  wnfc 2879  wrex 3056   ciun 4939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rex 3057  df-iun 4941
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator