| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiu1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.) Avoid ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfiu1 | ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 4945 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | nfre1 3254 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
| 3 | 1, 2 | nfxfr 1853 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 4 | 3 | nfci 2879 | 1 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Ⅎwnfc 2876 ∃wrex 3053 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rex 3054 df-v 3438 df-iun 4943 |
| This theorem is referenced by: ssiun2s 4997 disjxiun 5089 triun 5213 iunopeqop 5464 eliunxp 5780 opeliunxp2 5781 opeliunxp2f 8143 ixpf 8847 ixpiunwdom 9482 r1val1 9682 rankuni2b 9749 rankval4 9763 cplem2 9786 ac6num 10373 iunfo 10433 iundom2g 10434 inar1 10669 tskuni 10677 gsum2d2lem 19852 gsum2d2 19853 gsumcom2 19854 iunconn 23313 ptclsg 23500 cnextfvval 23950 ssiun2sf 32503 djussxp2 32592 2ndresdju 32593 aciunf1lem 32606 fsumiunle 32775 irngnzply1 33664 esum2dlem 34065 esum2d 34066 esumiun 34067 sigapildsys 34135 bnj958 34913 bnj1000 34914 bnj981 34923 bnj1398 35007 bnj1408 35009 ralssiun 37391 iunconnlem2 44918 iunmapss 45203 iunmapsn 45205 allbutfi 45382 fsumiunss 45566 dvnprodlem1 45937 dvnprodlem2 45938 sge0iunmptlemfi 46404 sge0iunmptlemre 46406 sge0iunmpt 46409 iundjiun 46451 voliunsge0lem 46463 caratheodorylem2 46518 smflimmpt 46801 smflimsuplem7 46817 eliunxp2 48328 |
| Copyright terms: Public domain | W3C validator |