| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiu1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.) Avoid ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfiu1 | ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 4955 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | nfre1 3260 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
| 3 | 1, 2 | nfxfr 1853 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 4 | 3 | nfci 2879 | 1 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Ⅎwnfc 2876 ∃wrex 3053 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rex 3054 df-v 3446 df-iun 4953 |
| This theorem is referenced by: ssiun2s 5007 disjxiun 5099 triun 5224 iunopeqop 5476 eliunxp 5791 opeliunxp2 5792 opeliunxp2f 8166 ixpf 8870 ixpiunwdom 9519 r1val1 9715 rankuni2b 9782 rankval4 9796 cplem2 9819 ac6num 10408 iunfo 10468 iundom2g 10469 inar1 10704 tskuni 10712 gsum2d2lem 19887 gsum2d2 19888 gsumcom2 19889 iunconn 23348 ptclsg 23535 cnextfvval 23985 ssiun2sf 32538 djussxp2 32622 2ndresdju 32623 aciunf1lem 32636 fsumiunle 32804 irngnzply1 33679 esum2dlem 34075 esum2d 34076 esumiun 34077 sigapildsys 34145 bnj958 34923 bnj1000 34924 bnj981 34933 bnj1398 35017 bnj1408 35019 ralssiun 37388 iunconnlem2 44917 iunmapss 45202 iunmapsn 45204 allbutfi 45382 fsumiunss 45566 dvnprodlem1 45937 dvnprodlem2 45938 sge0iunmptlemfi 46404 sge0iunmptlemre 46406 sge0iunmpt 46409 iundjiun 46451 voliunsge0lem 46463 caratheodorylem2 46518 smflimmpt 46801 smflimsuplem7 46817 eliunxp2 48315 |
| Copyright terms: Public domain | W3C validator |