![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfiu1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.) Avoid ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.) |
Ref | Expression |
---|---|
nfiu1 | ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 5019 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | nfre1 3291 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
3 | 1, 2 | nfxfr 1851 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
4 | 3 | nfci 2896 | 1 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Ⅎwnfc 2893 ∃wrex 3076 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rex 3077 df-v 3490 df-iun 5017 |
This theorem is referenced by: ssiun2s 5071 disjxiun 5163 triun 5298 iunopeqop 5540 eliunxp 5862 opeliunxp2 5863 opeliunxp2f 8251 ixpf 8978 ixpiunwdom 9659 r1val1 9855 rankuni2b 9922 rankval4 9936 cplem2 9959 ac6num 10548 iunfo 10608 iundom2g 10609 inar1 10844 tskuni 10852 gsum2d2lem 20015 gsum2d2 20016 gsumcom2 20017 iunconn 23457 ptclsg 23644 cnextfvval 24094 ssiun2sf 32582 djussxp2 32666 2ndresdju 32667 aciunf1lem 32680 fsumiunle 32833 irngnzply1 33691 esum2dlem 34056 esum2d 34057 esumiun 34058 sigapildsys 34126 bnj958 34916 bnj1000 34917 bnj981 34926 bnj1398 35010 bnj1408 35012 ralssiun 37373 iunconnlem2 44906 iunmapss 45122 iunmapsn 45124 allbutfi 45308 fsumiunss 45496 dvnprodlem1 45867 dvnprodlem2 45868 sge0iunmptlemfi 46334 sge0iunmptlemre 46336 sge0iunmpt 46339 iundjiun 46381 voliunsge0lem 46393 caratheodorylem2 46448 smflimmpt 46731 smflimsuplem7 46747 eliunxp2 48058 |
Copyright terms: Public domain | W3C validator |