| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiu1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.) Avoid ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfiu1 | ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 4961 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | nfre1 3263 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
| 3 | 1, 2 | nfxfr 1853 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 4 | 3 | nfci 2880 | 1 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Ⅎwnfc 2877 ∃wrex 3054 ∪ ciun 4957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rex 3055 df-v 3452 df-iun 4959 |
| This theorem is referenced by: ssiun2s 5014 disjxiun 5106 triun 5231 iunopeqop 5483 eliunxp 5803 opeliunxp2 5804 opeliunxp2f 8191 ixpf 8895 ixpiunwdom 9549 r1val1 9745 rankuni2b 9812 rankval4 9826 cplem2 9849 ac6num 10438 iunfo 10498 iundom2g 10499 inar1 10734 tskuni 10742 gsum2d2lem 19909 gsum2d2 19910 gsumcom2 19911 iunconn 23321 ptclsg 23508 cnextfvval 23958 ssiun2sf 32494 djussxp2 32578 2ndresdju 32579 aciunf1lem 32592 fsumiunle 32760 irngnzply1 33692 esum2dlem 34088 esum2d 34089 esumiun 34090 sigapildsys 34158 bnj958 34936 bnj1000 34937 bnj981 34946 bnj1398 35030 bnj1408 35032 ralssiun 37390 iunconnlem2 44917 iunmapss 45202 iunmapsn 45204 allbutfi 45382 fsumiunss 45566 dvnprodlem1 45937 dvnprodlem2 45938 sge0iunmptlemfi 46404 sge0iunmptlemre 46406 sge0iunmpt 46409 iundjiun 46451 voliunsge0lem 46463 caratheodorylem2 46518 smflimmpt 46801 smflimsuplem7 46817 eliunxp2 48312 |
| Copyright terms: Public domain | W3C validator |