Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfiu1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.) |
Ref | Expression |
---|---|
nfiu1 | ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 4926 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
2 | nfre1 3239 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
3 | 2 | nfab 2913 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
4 | 1, 3 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {cab 2715 Ⅎwnfc 2887 ∃wrex 3065 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rex 3070 df-iun 4926 |
This theorem is referenced by: ssiun2s 4978 disjxiun 5071 triun 5204 iunopeqop 5435 eliunxp 5746 opeliunxp2 5747 opeliunxp2f 8026 ixpf 8708 ixpiunwdom 9349 r1val1 9544 rankuni2b 9611 rankval4 9625 cplem2 9648 ac6num 10235 iunfo 10295 iundom2g 10296 inar1 10531 tskuni 10539 gsum2d2lem 19574 gsum2d2 19575 gsumcom2 19576 iunconn 22579 ptclsg 22766 cnextfvval 23216 ssiun2sf 30899 djussxp2 30985 2ndresdju 30986 aciunf1lem 30999 fsumiunle 31143 esum2dlem 32060 esum2d 32061 esumiun 32062 sigapildsys 32130 bnj958 32920 bnj1000 32921 bnj981 32930 bnj1398 33014 bnj1408 33016 ralssiun 35578 iunconnlem2 42555 iunmapss 42755 iunmapsn 42757 allbutfi 42933 fsumiunss 43116 dvnprodlem1 43487 dvnprodlem2 43488 sge0iunmptlemfi 43951 sge0iunmptlemre 43953 sge0iunmpt 43956 iundjiun 43998 voliunsge0lem 44010 caratheodorylem2 44065 smflimmpt 44343 smflimsuplem7 44359 eliunxp2 45669 |
Copyright terms: Public domain | W3C validator |