| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiu1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.) Avoid ax-11 2160, ax-12 2180. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfiu1 | ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 4943 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | nfre1 3257 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
| 3 | 1, 2 | nfxfr 1854 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 4 | 3 | nfci 2882 | 1 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Ⅎwnfc 2879 ∃wrex 3056 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rex 3057 df-v 3438 df-iun 4941 |
| This theorem is referenced by: ssiun2s 4995 disjxiun 5086 triun 5210 iunopeqop 5459 eliunxp 5776 opeliunxp2 5777 opeliunxp2f 8140 ixpf 8844 ixpiunwdom 9476 r1val1 9679 rankuni2b 9746 rankval4 9760 cplem2 9783 ac6num 10370 iunfo 10430 iundom2g 10431 inar1 10666 tskuni 10674 gsum2d2lem 19885 gsum2d2 19886 gsumcom2 19887 iunconn 23343 ptclsg 23530 cnextfvval 23980 ssiun2sf 32539 djussxp2 32630 2ndresdju 32631 aciunf1lem 32644 fsumiunle 32812 irngnzply1 33704 esum2dlem 34105 esum2d 34106 esumiun 34107 sigapildsys 34175 bnj958 34952 bnj1000 34953 bnj981 34962 bnj1398 35046 bnj1408 35048 rankval4b 35111 ralssiun 37451 iunconnlem2 45026 iunmapss 45311 iunmapsn 45313 allbutfi 45490 fsumiunss 45674 dvnprodlem1 46043 dvnprodlem2 46044 sge0iunmptlemfi 46510 sge0iunmptlemre 46512 sge0iunmpt 46515 iundjiun 46557 voliunsge0lem 46569 caratheodorylem2 46624 smflimmpt 46907 smflimsuplem7 46923 eliunxp2 48433 |
| Copyright terms: Public domain | W3C validator |