![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfiu1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.) Avoid ax-11 2155, ax-12 2175. (Revised by SN, 14-May-2025.) |
Ref | Expression |
---|---|
nfiu1 | ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 5000 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | nfre1 3283 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
3 | 1, 2 | nfxfr 1850 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
4 | 3 | nfci 2891 | 1 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Ⅎwnfc 2888 ∃wrex 3068 ∪ ciun 4996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-rex 3069 df-v 3480 df-iun 4998 |
This theorem is referenced by: ssiun2s 5053 disjxiun 5145 triun 5280 iunopeqop 5531 eliunxp 5851 opeliunxp2 5852 opeliunxp2f 8234 ixpf 8959 ixpiunwdom 9628 r1val1 9824 rankuni2b 9891 rankval4 9905 cplem2 9928 ac6num 10517 iunfo 10577 iundom2g 10578 inar1 10813 tskuni 10821 gsum2d2lem 20006 gsum2d2 20007 gsumcom2 20008 iunconn 23452 ptclsg 23639 cnextfvval 24089 ssiun2sf 32580 djussxp2 32665 2ndresdju 32666 aciunf1lem 32679 fsumiunle 32836 irngnzply1 33706 esum2dlem 34073 esum2d 34074 esumiun 34075 sigapildsys 34143 bnj958 34933 bnj1000 34934 bnj981 34943 bnj1398 35027 bnj1408 35029 ralssiun 37390 iunconnlem2 44933 iunmapss 45158 iunmapsn 45160 allbutfi 45343 fsumiunss 45531 dvnprodlem1 45902 dvnprodlem2 45903 sge0iunmptlemfi 46369 sge0iunmptlemre 46371 sge0iunmpt 46374 iundjiun 46416 voliunsge0lem 46428 caratheodorylem2 46483 smflimmpt 46766 smflimsuplem7 46782 eliunxp2 48179 |
Copyright terms: Public domain | W3C validator |