| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiu1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.) Avoid ax-11 2156, ax-12 2176. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfiu1 | ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 4994 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | nfre1 3284 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
| 3 | 1, 2 | nfxfr 1852 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 4 | 3 | nfci 2892 | 1 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Ⅎwnfc 2889 ∃wrex 3069 ∪ ciun 4990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-rex 3070 df-v 3481 df-iun 4992 |
| This theorem is referenced by: ssiun2s 5047 disjxiun 5139 triun 5273 iunopeqop 5525 eliunxp 5847 opeliunxp2 5848 opeliunxp2f 8236 ixpf 8961 ixpiunwdom 9631 r1val1 9827 rankuni2b 9894 rankval4 9908 cplem2 9931 ac6num 10520 iunfo 10580 iundom2g 10581 inar1 10816 tskuni 10824 gsum2d2lem 19992 gsum2d2 19993 gsumcom2 19994 iunconn 23437 ptclsg 23624 cnextfvval 24074 ssiun2sf 32573 djussxp2 32659 2ndresdju 32660 aciunf1lem 32673 fsumiunle 32832 irngnzply1 33742 esum2dlem 34094 esum2d 34095 esumiun 34096 sigapildsys 34164 bnj958 34955 bnj1000 34956 bnj981 34965 bnj1398 35049 bnj1408 35051 ralssiun 37409 iunconnlem2 44960 iunmapss 45225 iunmapsn 45227 allbutfi 45409 fsumiunss 45595 dvnprodlem1 45966 dvnprodlem2 45967 sge0iunmptlemfi 46433 sge0iunmptlemre 46435 sge0iunmpt 46438 iundjiun 46480 voliunsge0lem 46492 caratheodorylem2 46547 smflimmpt 46830 smflimsuplem7 46846 eliunxp2 48255 |
| Copyright terms: Public domain | W3C validator |