| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiu1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.) Avoid ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfiu1 | ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 4976 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | nfre1 3271 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
| 3 | 1, 2 | nfxfr 1853 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 4 | 3 | nfci 2887 | 1 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Ⅎwnfc 2884 ∃wrex 3061 ∪ ciun 4972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-rex 3062 df-v 3466 df-iun 4974 |
| This theorem is referenced by: ssiun2s 5029 disjxiun 5121 triun 5249 iunopeqop 5501 eliunxp 5822 opeliunxp2 5823 opeliunxp2f 8214 ixpf 8939 ixpiunwdom 9609 r1val1 9805 rankuni2b 9872 rankval4 9886 cplem2 9909 ac6num 10498 iunfo 10558 iundom2g 10559 inar1 10794 tskuni 10802 gsum2d2lem 19959 gsum2d2 19960 gsumcom2 19961 iunconn 23371 ptclsg 23558 cnextfvval 24008 ssiun2sf 32545 djussxp2 32631 2ndresdju 32632 aciunf1lem 32645 fsumiunle 32813 irngnzply1 33737 esum2dlem 34128 esum2d 34129 esumiun 34130 sigapildsys 34198 bnj958 34976 bnj1000 34977 bnj981 34986 bnj1398 35070 bnj1408 35072 ralssiun 37430 iunconnlem2 44934 iunmapss 45219 iunmapsn 45221 allbutfi 45400 fsumiunss 45584 dvnprodlem1 45955 dvnprodlem2 45956 sge0iunmptlemfi 46422 sge0iunmptlemre 46424 sge0iunmpt 46427 iundjiun 46469 voliunsge0lem 46481 caratheodorylem2 46536 smflimmpt 46819 smflimsuplem7 46835 eliunxp2 48289 |
| Copyright terms: Public domain | W3C validator |