| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiu1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.) Avoid ax-11 2157, ax-12 2177. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfiu1 | ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 4971 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
| 2 | nfre1 3267 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
| 3 | 1, 2 | nfxfr 1853 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 4 | 3 | nfci 2886 | 1 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Ⅎwnfc 2883 ∃wrex 3060 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-rex 3061 df-v 3461 df-iun 4969 |
| This theorem is referenced by: ssiun2s 5024 disjxiun 5116 triun 5244 iunopeqop 5496 eliunxp 5817 opeliunxp2 5818 opeliunxp2f 8207 ixpf 8932 ixpiunwdom 9602 r1val1 9798 rankuni2b 9865 rankval4 9879 cplem2 9902 ac6num 10491 iunfo 10551 iundom2g 10552 inar1 10787 tskuni 10795 gsum2d2lem 19952 gsum2d2 19953 gsumcom2 19954 iunconn 23364 ptclsg 23551 cnextfvval 24001 ssiun2sf 32486 djussxp2 32572 2ndresdju 32573 aciunf1lem 32586 fsumiunle 32754 irngnzply1 33678 esum2dlem 34069 esum2d 34070 esumiun 34071 sigapildsys 34139 bnj958 34917 bnj1000 34918 bnj981 34927 bnj1398 35011 bnj1408 35013 ralssiun 37371 iunconnlem2 44907 iunmapss 45187 iunmapsn 45189 allbutfi 45368 fsumiunss 45552 dvnprodlem1 45923 dvnprodlem2 45924 sge0iunmptlemfi 46390 sge0iunmptlemre 46392 sge0iunmpt 46395 iundjiun 46437 voliunsge0lem 46449 caratheodorylem2 46504 smflimmpt 46787 smflimsuplem7 46803 eliunxp2 48257 |
| Copyright terms: Public domain | W3C validator |