![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfiu1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.) Avoid ax-11 2153, ax-12 2173. (Revised by SN, 14-May-2025.) |
Ref | Expression |
---|---|
nfiu1 | ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 5023 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | nfre1 3286 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
3 | 1, 2 | nfxfr 1851 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 |
4 | 3 | nfci 2891 | 1 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2103 Ⅎwnfc 2888 ∃wrex 3072 ∪ ciun 5019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-rex 3073 df-v 3484 df-iun 5021 |
This theorem is referenced by: ssiun2s 5074 disjxiun 5166 triun 5301 iunopeqop 5544 eliunxp 5861 opeliunxp2 5862 opeliunxp2f 8247 ixpf 8974 ixpiunwdom 9655 r1val1 9851 rankuni2b 9918 rankval4 9932 cplem2 9955 ac6num 10544 iunfo 10604 iundom2g 10605 inar1 10840 tskuni 10848 gsum2d2lem 20010 gsum2d2 20011 gsumcom2 20012 iunconn 23450 ptclsg 23637 cnextfvval 24087 ssiun2sf 32573 djussxp2 32658 2ndresdju 32659 aciunf1lem 32672 fsumiunle 32825 irngnzply1 33683 esum2dlem 34048 esum2d 34049 esumiun 34050 sigapildsys 34118 bnj958 34908 bnj1000 34909 bnj981 34918 bnj1398 35002 bnj1408 35004 weiunfrlem2 36380 ralssiun 37321 iunconnlem2 44846 iunmapss 45056 iunmapsn 45058 allbutfi 45242 fsumiunss 45430 dvnprodlem1 45801 dvnprodlem2 45802 sge0iunmptlemfi 46268 sge0iunmptlemre 46270 sge0iunmpt 46273 iundjiun 46315 voliunsge0lem 46327 caratheodorylem2 46382 smflimmpt 46665 smflimsuplem7 46681 eliunxp2 47976 |
Copyright terms: Public domain | W3C validator |