Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfiu1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.) |
Ref | Expression |
---|---|
nfiu1 | ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 4932 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
2 | nfre1 3237 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
3 | 2 | nfab 2915 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
4 | 1, 3 | nfcxfr 2907 | 1 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 {cab 2717 Ⅎwnfc 2889 ∃wrex 3067 ∪ ciun 4930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-rex 3072 df-iun 4932 |
This theorem is referenced by: ssiun2s 4983 disjxiun 5076 triun 5209 iunopeqop 5438 eliunxp 5744 opeliunxp2 5745 opeliunxp2f 8011 ixpf 8683 ixpiunwdom 9319 r1val1 9537 rankuni2b 9604 rankval4 9618 cplem2 9641 ac6num 10228 iunfo 10288 iundom2g 10289 inar1 10524 tskuni 10532 gsum2d2lem 19564 gsum2d2 19565 gsumcom2 19566 iunconn 22569 ptclsg 22756 cnextfvval 23206 ssiun2sf 30887 djussxp2 30973 2ndresdju 30974 aciunf1lem 30987 fsumiunle 31131 esum2dlem 32048 esum2d 32049 esumiun 32050 sigapildsys 32118 bnj958 32908 bnj1000 32909 bnj981 32918 bnj1398 33002 bnj1408 33004 ralssiun 35566 iunconnlem2 42517 iunmapss 42717 iunmapsn 42719 allbutfi 42896 fsumiunss 43079 dvnprodlem1 43450 dvnprodlem2 43451 sge0iunmptlemfi 43914 sge0iunmptlemre 43916 sge0iunmpt 43919 iundjiun 43961 voliunsge0lem 43973 caratheodorylem2 44028 smflimmpt 44303 smflimsuplem7 44319 eliunxp2 45630 |
Copyright terms: Public domain | W3C validator |