Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfiu1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed union. (Contributed by NM, 12-Oct-2003.) |
Ref | Expression |
---|---|
nfiu1 | ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 4923 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
2 | nfre1 3234 | . . 3 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
3 | 2 | nfab 2912 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
4 | 1, 3 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {cab 2715 Ⅎwnfc 2886 ∃wrex 3064 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rex 3069 df-iun 4923 |
This theorem is referenced by: ssiun2s 4974 disjxiun 5067 triun 5200 iunopeqop 5429 eliunxp 5735 opeliunxp2 5736 opeliunxp2f 7997 ixpf 8666 ixpiunwdom 9279 r1val1 9475 rankuni2b 9542 rankval4 9556 cplem2 9579 ac6num 10166 iunfo 10226 iundom2g 10227 inar1 10462 tskuni 10470 gsum2d2lem 19489 gsum2d2 19490 gsumcom2 19491 iunconn 22487 ptclsg 22674 cnextfvval 23124 ssiun2sf 30800 djussxp2 30886 2ndresdju 30887 aciunf1lem 30901 fsumiunle 31045 esum2dlem 31960 esum2d 31961 esumiun 31962 sigapildsys 32030 bnj958 32820 bnj1000 32821 bnj981 32830 bnj1398 32914 bnj1408 32916 ralssiun 35505 iunconnlem2 42444 iunmapss 42644 iunmapsn 42646 allbutfi 42823 fsumiunss 43006 dvnprodlem1 43377 dvnprodlem2 43378 sge0iunmptlemfi 43841 sge0iunmptlemre 43843 sge0iunmpt 43846 iundjiun 43888 voliunsge0lem 43900 caratheodorylem2 43955 smflimmpt 44230 smflimsuplem7 44246 eliunxp2 45557 |
Copyright terms: Public domain | W3C validator |