| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfre1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfe1 2151 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
| 3 | 1, 2 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-rex 3054 |
| This theorem is referenced by: 2rmorex 3725 2reurex 3731 reuan 3859 2reu4lem 4485 nfiu1 4991 nfiu1OLD 4992 reusv2lem3 5355 fvelimad 6928 fsnex 7258 eusvobj2 7379 fiun 7921 f1iun 7922 zfregcl 9547 scott0 9839 ac6c4 10434 lbzbi 12895 mreiincl 17557 lss1d 20869 neiptopnei 23019 neitr 23067 utopsnneiplem 24135 cfilucfil 24447 2sqmo 27348 nosupbnd2 27628 noinfbnd2 27643 mptelee 28822 isch3 31170 atom1d 32282 opreu2reuALT 32406 iinabrex 32498 xrofsup 32690 locfinreflem 33830 esumc 34041 esumrnmpt2 34058 hasheuni 34075 esumcvg 34076 esumcvgre 34081 voliune 34219 volfiniune 34220 ddemeas 34226 eulerpartlemgvv 34367 bnj900 34919 bnj1189 34999 bnj1204 35002 bnj1398 35024 bnj1444 35033 bnj1445 35034 bnj1446 35035 bnj1447 35036 bnj1467 35044 bnj1518 35054 bnj1519 35055 iooelexlt 37350 fvineqsneq 37400 ptrest 37613 poimirlem26 37640 indexa 37727 filbcmb 37734 sdclem1 37737 heibor1 37804 dihglblem5 41292 unielss 43207 oaun3lem1 43363 suprnmpt 45168 disjinfi 45186 upbdrech 45303 ssfiunibd 45307 infxrunb2 45364 supxrunb3 45395 iccshift 45516 iooshift 45520 islpcn 45637 limsupre 45639 limclner 45649 limsupre3uzlem 45733 climuzlem 45741 xlimmnfv 45832 xlimpnfv 45836 itgperiod 45979 stoweidlem53 46051 stoweidlem57 46055 fourierdlem48 46152 fourierdlem51 46155 fourierdlem73 46177 fourierdlem81 46185 elaa2 46232 etransclem32 46264 sge0iunmptlemre 46413 voliunsge0lem 46470 meaiuninc3v 46482 isomenndlem 46528 ovnsubaddlem1 46568 hoidmvlelem1 46593 hoidmvlelem5 46597 smfaddlem1 46761 tworepnotupword 46884 2reu7 47112 2reu8 47113 f1oresf1o2 47292 mogoldbb 47786 2zrngagrp 48237 2zrngmmgm 48240 |
| Copyright terms: Public domain | W3C validator |