| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfre1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfe1 2151 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
| 3 | 1, 2 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-rex 3054 |
| This theorem is referenced by: 2rmorex 3714 2reurex 3720 reuan 3848 2reu4lem 4473 nfiu1 4977 nfiu1OLD 4978 reusv2lem3 5339 fvelimad 6890 fsnex 7220 eusvobj2 7341 fiun 7878 f1iun 7879 zfregclOLD 9487 scott0 9782 ac6c4 10375 lbzbi 12837 mreiincl 17498 lss1d 20866 neiptopnei 23017 neitr 23065 utopsnneiplem 24133 cfilucfil 24445 2sqmo 27346 nosupbnd2 27626 noinfbnd2 27641 mptelee 28840 isch3 31185 atom1d 32297 opreu2reuALT 32421 iinabrex 32513 xrofsup 32710 locfinreflem 33807 esumc 34018 esumrnmpt2 34035 hasheuni 34052 esumcvg 34053 esumcvgre 34058 voliune 34196 volfiniune 34197 ddemeas 34203 eulerpartlemgvv 34344 bnj900 34896 bnj1189 34976 bnj1204 34979 bnj1398 35001 bnj1444 35010 bnj1445 35011 bnj1446 35012 bnj1447 35013 bnj1467 35021 bnj1518 35031 bnj1519 35032 iooelexlt 37336 fvineqsneq 37386 ptrest 37599 poimirlem26 37626 indexa 37713 filbcmb 37720 sdclem1 37723 heibor1 37790 dihglblem5 41277 unielss 43191 oaun3lem1 43347 suprnmpt 45152 disjinfi 45170 upbdrech 45287 ssfiunibd 45291 infxrunb2 45347 supxrunb3 45378 iccshift 45499 iooshift 45503 islpcn 45620 limsupre 45622 limclner 45632 limsupre3uzlem 45716 climuzlem 45724 xlimmnfv 45815 xlimpnfv 45819 itgperiod 45962 stoweidlem53 46034 stoweidlem57 46038 fourierdlem48 46135 fourierdlem51 46138 fourierdlem73 46160 fourierdlem81 46168 elaa2 46215 etransclem32 46247 sge0iunmptlemre 46396 voliunsge0lem 46453 meaiuninc3v 46465 isomenndlem 46511 ovnsubaddlem1 46551 hoidmvlelem1 46576 hoidmvlelem5 46580 smfaddlem1 46744 tworepnotupword 46867 2reu7 47095 2reu8 47096 f1oresf1o2 47275 mogoldbb 47769 2zrngagrp 48233 2zrngmmgm 48236 |
| Copyright terms: Public domain | W3C validator |