| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfre1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3061 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfe1 2150 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
| 3 | 1, 2 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2141 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-rex 3061 |
| This theorem is referenced by: 2rmorex 3737 2reurex 3743 reuan 3871 2reu4lem 4497 nfiu1 5003 nfiu1OLD 5004 reusv2lem3 5370 fvelimad 6946 fsnex 7276 eusvobj2 7397 fiun 7941 f1iun 7942 zfregcl 9608 scott0 9900 ac6c4 10495 lbzbi 12952 mreiincl 17608 lss1d 20920 neiptopnei 23070 neitr 23118 utopsnneiplem 24186 cfilucfil 24498 2sqmo 27400 nosupbnd2 27680 noinfbnd2 27695 mptelee 28874 isch3 31222 atom1d 32334 opreu2reuALT 32458 iinabrex 32550 xrofsup 32744 locfinreflem 33871 esumc 34082 esumrnmpt2 34099 hasheuni 34116 esumcvg 34117 esumcvgre 34122 voliune 34260 volfiniune 34261 ddemeas 34267 eulerpartlemgvv 34408 bnj900 34960 bnj1189 35040 bnj1204 35043 bnj1398 35065 bnj1444 35074 bnj1445 35075 bnj1446 35076 bnj1447 35077 bnj1467 35085 bnj1518 35095 bnj1519 35096 iooelexlt 37380 fvineqsneq 37430 ptrest 37643 poimirlem26 37670 indexa 37757 filbcmb 37764 sdclem1 37767 heibor1 37834 dihglblem5 41317 unielss 43242 oaun3lem1 43398 suprnmpt 45198 disjinfi 45216 upbdrech 45334 ssfiunibd 45338 infxrunb2 45395 supxrunb3 45426 iccshift 45547 iooshift 45551 islpcn 45668 limsupre 45670 limclner 45680 limsupre3uzlem 45764 climuzlem 45772 xlimmnfv 45863 xlimpnfv 45867 itgperiod 46010 stoweidlem53 46082 stoweidlem57 46086 fourierdlem48 46183 fourierdlem51 46186 fourierdlem73 46208 fourierdlem81 46216 elaa2 46263 etransclem32 46295 sge0iunmptlemre 46444 voliunsge0lem 46501 meaiuninc3v 46513 isomenndlem 46559 ovnsubaddlem1 46599 hoidmvlelem1 46624 hoidmvlelem5 46628 smfaddlem1 46792 tworepnotupword 46915 2reu7 47140 2reu8 47141 f1oresf1o2 47320 mogoldbb 47799 2zrngagrp 48224 2zrngmmgm 48227 |
| Copyright terms: Public domain | W3C validator |