Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfre1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfe1 2149 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
3 | 1, 2 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1783 Ⅎwnf 1787 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-10 2139 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 df-rex 3069 |
This theorem is referenced by: 2rmorex 3684 2reurex 3690 reuan 3825 2reu4lem 4453 nfiu1 4955 reusv2lem3 5318 fvelimad 6818 fsnex 7135 eusvobj2 7248 fiun 7759 f1iun 7760 zfregcl 9283 scott0 9575 ac6c4 10168 lbzbi 12605 mreiincl 17222 lss1d 20140 neiptopnei 22191 neitr 22239 utopsnneiplem 23307 cfilucfil 23621 2sqmo 26490 mptelee 27166 isch3 29504 atom1d 30616 opreu2reuALT 30726 iinabrex 30809 xrofsup 30992 locfinreflem 31692 esumc 31919 esumrnmpt2 31936 hasheuni 31953 esumcvg 31954 esumcvgre 31959 voliune 32097 volfiniune 32098 ddemeas 32104 eulerpartlemgvv 32243 bnj900 32809 bnj1189 32889 bnj1204 32892 bnj1398 32914 bnj1444 32923 bnj1445 32924 bnj1446 32925 bnj1447 32926 bnj1467 32934 bnj1518 32944 bnj1519 32945 nosupbnd2 33846 noinfbnd2 33861 iooelexlt 35460 fvineqsneq 35510 ptrest 35703 poimirlem26 35730 indexa 35818 filbcmb 35825 sdclem1 35828 heibor1 35895 dihglblem5 39239 suprnmpt 42599 disjinfi 42620 upbdrech 42734 ssfiunibd 42738 infxrunb2 42797 supxrunb3 42829 iccshift 42946 iooshift 42950 islpcn 43070 limsupre 43072 limclner 43082 limsupre3uzlem 43166 climuzlem 43174 xlimmnfv 43265 xlimpnfv 43269 itgperiod 43412 stoweidlem53 43484 stoweidlem57 43488 fourierdlem48 43585 fourierdlem51 43588 fourierdlem73 43610 fourierdlem81 43618 elaa2 43665 etransclem32 43697 sge0iunmptlemre 43843 voliunsge0lem 43900 meaiuninc3v 43912 isomenndlem 43958 ovnsubaddlem1 43998 hoidmvlelem1 44023 hoidmvlelem5 44027 smfaddlem1 44185 2reu7 44490 2reu8 44491 f1oresf1o2 44670 mogoldbb 45125 2zrngagrp 45389 2zrngmmgm 45392 |
Copyright terms: Public domain | W3C validator |