![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfre1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfe1 2147 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
3 | 1, 2 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∃wex 1781 Ⅎwnf 1785 ∈ wcel 2106 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-10 2137 |
This theorem depends on definitions: df-bi 206 df-ex 1782 df-nf 1786 df-rex 3071 |
This theorem is referenced by: 2rmorex 3749 2reurex 3755 reuan 3889 2reu4lem 4524 nfiu1 5030 reusv2lem3 5397 fvelimad 6956 fsnex 7277 eusvobj2 7397 fiun 7925 f1iun 7926 zfregcl 9585 scott0 9877 ac6c4 10472 lbzbi 12916 mreiincl 17536 lss1d 20566 neiptopnei 22627 neitr 22675 utopsnneiplem 23743 cfilucfil 24059 2sqmo 26929 nosupbnd2 27208 noinfbnd2 27223 mptelee 28142 isch3 30481 atom1d 31593 opreu2reuALT 31704 iinabrex 31787 xrofsup 31967 locfinreflem 32808 esumc 33037 esumrnmpt2 33054 hasheuni 33071 esumcvg 33072 esumcvgre 33077 voliune 33215 volfiniune 33216 ddemeas 33222 eulerpartlemgvv 33363 bnj900 33928 bnj1189 34008 bnj1204 34011 bnj1398 34033 bnj1444 34042 bnj1445 34043 bnj1446 34044 bnj1447 34045 bnj1467 34053 bnj1518 34063 bnj1519 34064 iooelexlt 36231 fvineqsneq 36281 ptrest 36475 poimirlem26 36502 indexa 36589 filbcmb 36596 sdclem1 36599 heibor1 36666 dihglblem5 40157 unielss 41952 oaun3lem1 42109 suprnmpt 43855 disjinfi 43876 upbdrech 44001 ssfiunibd 44005 infxrunb2 44064 supxrunb3 44095 iccshift 44217 iooshift 44221 islpcn 44341 limsupre 44343 limclner 44353 limsupre3uzlem 44437 climuzlem 44445 xlimmnfv 44536 xlimpnfv 44540 itgperiod 44683 stoweidlem53 44755 stoweidlem57 44759 fourierdlem48 44856 fourierdlem51 44859 fourierdlem73 44881 fourierdlem81 44889 elaa2 44936 etransclem32 44968 sge0iunmptlemre 45117 voliunsge0lem 45174 meaiuninc3v 45186 isomenndlem 45232 ovnsubaddlem1 45272 hoidmvlelem1 45297 hoidmvlelem5 45301 smfaddlem1 45465 tworepnotupword 45586 2reu7 45805 2reu8 45806 f1oresf1o2 45985 mogoldbb 46439 2zrngagrp 46794 2zrngmmgm 46797 |
Copyright terms: Public domain | W3C validator |