Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfre1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfe1 2146 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
3 | 1, 2 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∃wex 1780 Ⅎwnf 1784 ∈ wcel 2105 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-10 2136 |
This theorem depends on definitions: df-bi 206 df-ex 1781 df-nf 1785 df-rex 3071 |
This theorem is referenced by: 2rmorex 3698 2reurex 3704 reuan 3838 2reu4lem 4467 nfiu1 4970 reusv2lem3 5337 fvelimad 6875 fsnex 7194 eusvobj2 7309 fiun 7831 f1iun 7832 zfregcl 9429 scott0 9721 ac6c4 10316 lbzbi 12755 mreiincl 17379 lss1d 20305 neiptopnei 22363 neitr 22411 utopsnneiplem 23479 cfilucfil 23795 2sqmo 26665 mptelee 27396 isch3 29735 atom1d 30847 opreu2reuALT 30957 iinabrex 31039 xrofsup 31221 locfinreflem 31926 esumc 32155 esumrnmpt2 32172 hasheuni 32189 esumcvg 32190 esumcvgre 32195 voliune 32333 volfiniune 32334 ddemeas 32340 eulerpartlemgvv 32479 bnj900 33044 bnj1189 33124 bnj1204 33127 bnj1398 33149 bnj1444 33158 bnj1445 33159 bnj1446 33160 bnj1447 33161 bnj1467 33169 bnj1518 33179 bnj1519 33180 nosupbnd2 33989 noinfbnd2 34004 iooelexlt 35610 fvineqsneq 35660 ptrest 35853 poimirlem26 35880 indexa 35968 filbcmb 35975 sdclem1 35978 heibor1 36045 dihglblem5 39538 suprnmpt 42956 disjinfi 42977 upbdrech 43098 ssfiunibd 43102 infxrunb2 43161 supxrunb3 43193 iccshift 43311 iooshift 43315 islpcn 43435 limsupre 43437 limclner 43447 limsupre3uzlem 43531 climuzlem 43539 xlimmnfv 43630 xlimpnfv 43634 itgperiod 43777 stoweidlem53 43849 stoweidlem57 43853 fourierdlem48 43950 fourierdlem51 43953 fourierdlem73 43975 fourierdlem81 43983 elaa2 44030 etransclem32 44062 sge0iunmptlemre 44209 voliunsge0lem 44266 meaiuninc3v 44278 isomenndlem 44324 ovnsubaddlem1 44364 hoidmvlelem1 44389 hoidmvlelem5 44393 smfaddlem1 44557 2reu7 44873 2reu8 44874 f1oresf1o2 45053 mogoldbb 45507 2zrngagrp 45771 2zrngmmgm 45774 tworepnotupword 46791 |
Copyright terms: Public domain | W3C validator |