Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfre1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfe1 2144 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
3 | 1, 2 | nfxfr 1852 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∃wex 1778 Ⅎwnf 1782 ∈ wcel 2103 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-10 2134 |
This theorem depends on definitions: df-bi 206 df-ex 1779 df-nf 1783 df-rex 3071 |
This theorem is referenced by: 2rmorex 3693 2reurex 3699 reuan 3833 2reu4lem 4460 nfiu1 4962 reusv2lem3 5327 fvelimad 6848 fsnex 7167 eusvobj2 7280 fiun 7797 f1iun 7798 zfregcl 9373 scott0 9664 ac6c4 10257 lbzbi 12696 mreiincl 17325 lss1d 20245 neiptopnei 22303 neitr 22351 utopsnneiplem 23419 cfilucfil 23735 2sqmo 26605 mptelee 27283 isch3 29623 atom1d 30735 opreu2reuALT 30845 iinabrex 30928 xrofsup 31110 locfinreflem 31810 esumc 32039 esumrnmpt2 32056 hasheuni 32073 esumcvg 32074 esumcvgre 32079 voliune 32217 volfiniune 32218 ddemeas 32224 eulerpartlemgvv 32363 bnj900 32929 bnj1189 33009 bnj1204 33012 bnj1398 33034 bnj1444 33043 bnj1445 33044 bnj1446 33045 bnj1447 33046 bnj1467 33054 bnj1518 33064 bnj1519 33065 nosupbnd2 33939 noinfbnd2 33954 iooelexlt 35553 fvineqsneq 35603 ptrest 35796 poimirlem26 35823 indexa 35911 filbcmb 35918 sdclem1 35921 heibor1 35988 dihglblem5 39330 suprnmpt 42734 disjinfi 42755 upbdrech 42872 ssfiunibd 42876 infxrunb2 42935 supxrunb3 42967 iccshift 43085 iooshift 43089 islpcn 43209 limsupre 43211 limclner 43221 limsupre3uzlem 43305 climuzlem 43313 xlimmnfv 43404 xlimpnfv 43408 itgperiod 43551 stoweidlem53 43623 stoweidlem57 43627 fourierdlem48 43724 fourierdlem51 43727 fourierdlem73 43749 fourierdlem81 43757 elaa2 43804 etransclem32 43836 sge0iunmptlemre 43983 voliunsge0lem 44040 meaiuninc3v 44052 isomenndlem 44098 ovnsubaddlem1 44138 hoidmvlelem1 44163 hoidmvlelem5 44167 smfaddlem1 44331 2reu7 44637 2reu8 44638 f1oresf1o2 44817 mogoldbb 45271 2zrngagrp 45535 2zrngmmgm 45538 tworepnotupword 46555 |
Copyright terms: Public domain | W3C validator |