| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfre1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfe1 2151 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
| 3 | 1, 2 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-rex 3054 |
| This theorem is referenced by: 2rmorex 3722 2reurex 3728 reuan 3856 2reu4lem 4481 nfiu1 4987 nfiu1OLD 4988 reusv2lem3 5350 fvelimad 6910 fsnex 7240 eusvobj2 7361 fiun 7901 f1iun 7902 zfregcl 9523 scott0 9815 ac6c4 10410 lbzbi 12871 mreiincl 17533 lss1d 20901 neiptopnei 23052 neitr 23100 utopsnneiplem 24168 cfilucfil 24480 2sqmo 27381 nosupbnd2 27661 noinfbnd2 27676 mptelee 28875 isch3 31220 atom1d 32332 opreu2reuALT 32456 iinabrex 32548 xrofsup 32740 locfinreflem 33823 esumc 34034 esumrnmpt2 34051 hasheuni 34068 esumcvg 34069 esumcvgre 34074 voliune 34212 volfiniune 34213 ddemeas 34219 eulerpartlemgvv 34360 bnj900 34912 bnj1189 34992 bnj1204 34995 bnj1398 35017 bnj1444 35026 bnj1445 35027 bnj1446 35028 bnj1447 35029 bnj1467 35037 bnj1518 35047 bnj1519 35048 iooelexlt 37343 fvineqsneq 37393 ptrest 37606 poimirlem26 37633 indexa 37720 filbcmb 37727 sdclem1 37730 heibor1 37797 dihglblem5 41285 unielss 43200 oaun3lem1 43356 suprnmpt 45161 disjinfi 45179 upbdrech 45296 ssfiunibd 45300 infxrunb2 45357 supxrunb3 45388 iccshift 45509 iooshift 45513 islpcn 45630 limsupre 45632 limclner 45642 limsupre3uzlem 45726 climuzlem 45734 xlimmnfv 45825 xlimpnfv 45829 itgperiod 45972 stoweidlem53 46044 stoweidlem57 46048 fourierdlem48 46145 fourierdlem51 46148 fourierdlem73 46170 fourierdlem81 46178 elaa2 46225 etransclem32 46257 sge0iunmptlemre 46406 voliunsge0lem 46463 meaiuninc3v 46475 isomenndlem 46521 ovnsubaddlem1 46561 hoidmvlelem1 46586 hoidmvlelem5 46590 smfaddlem1 46754 tworepnotupword 46877 2reu7 47105 2reu8 47106 f1oresf1o2 47285 mogoldbb 47779 2zrngagrp 48230 2zrngmmgm 48233 |
| Copyright terms: Public domain | W3C validator |