| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfre1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3055 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfe1 2151 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
| 3 | 1, 2 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-rex 3055 |
| This theorem is referenced by: 2rmorex 3728 2reurex 3734 reuan 3862 2reu4lem 4488 nfiu1 4994 nfiu1OLD 4995 reusv2lem3 5358 fvelimad 6931 fsnex 7261 eusvobj2 7382 fiun 7924 f1iun 7925 zfregcl 9554 scott0 9846 ac6c4 10441 lbzbi 12902 mreiincl 17564 lss1d 20876 neiptopnei 23026 neitr 23074 utopsnneiplem 24142 cfilucfil 24454 2sqmo 27355 nosupbnd2 27635 noinfbnd2 27650 mptelee 28829 isch3 31177 atom1d 32289 opreu2reuALT 32413 iinabrex 32505 xrofsup 32697 locfinreflem 33837 esumc 34048 esumrnmpt2 34065 hasheuni 34082 esumcvg 34083 esumcvgre 34088 voliune 34226 volfiniune 34227 ddemeas 34233 eulerpartlemgvv 34374 bnj900 34926 bnj1189 35006 bnj1204 35009 bnj1398 35031 bnj1444 35040 bnj1445 35041 bnj1446 35042 bnj1447 35043 bnj1467 35051 bnj1518 35061 bnj1519 35062 iooelexlt 37357 fvineqsneq 37407 ptrest 37620 poimirlem26 37647 indexa 37734 filbcmb 37741 sdclem1 37744 heibor1 37811 dihglblem5 41299 unielss 43214 oaun3lem1 43370 suprnmpt 45175 disjinfi 45193 upbdrech 45310 ssfiunibd 45314 infxrunb2 45371 supxrunb3 45402 iccshift 45523 iooshift 45527 islpcn 45644 limsupre 45646 limclner 45656 limsupre3uzlem 45740 climuzlem 45748 xlimmnfv 45839 xlimpnfv 45843 itgperiod 45986 stoweidlem53 46058 stoweidlem57 46062 fourierdlem48 46159 fourierdlem51 46162 fourierdlem73 46184 fourierdlem81 46192 elaa2 46239 etransclem32 46271 sge0iunmptlemre 46420 voliunsge0lem 46477 meaiuninc3v 46489 isomenndlem 46535 ovnsubaddlem1 46575 hoidmvlelem1 46600 hoidmvlelem5 46604 smfaddlem1 46768 tworepnotupword 46891 2reu7 47116 2reu8 47117 f1oresf1o2 47296 mogoldbb 47790 2zrngagrp 48241 2zrngmmgm 48244 |
| Copyright terms: Public domain | W3C validator |