![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfre1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3072 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfe1 2148 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
3 | 1, 2 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 ∃wex 1782 Ⅎwnf 1786 ∈ wcel 2107 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-10 2138 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 df-rex 3072 |
This theorem is referenced by: 2rmorex 3751 2reurex 3757 reuan 3891 2reu4lem 4526 nfiu1 5032 reusv2lem3 5399 fvelimad 6960 fsnex 7281 eusvobj2 7401 fiun 7929 f1iun 7930 zfregcl 9589 scott0 9881 ac6c4 10476 lbzbi 12920 mreiincl 17540 lss1d 20574 neiptopnei 22636 neitr 22684 utopsnneiplem 23752 cfilucfil 24068 2sqmo 26940 nosupbnd2 27219 noinfbnd2 27234 mptelee 28153 isch3 30494 atom1d 31606 opreu2reuALT 31717 iinabrex 31800 xrofsup 31980 locfinreflem 32820 esumc 33049 esumrnmpt2 33066 hasheuni 33083 esumcvg 33084 esumcvgre 33089 voliune 33227 volfiniune 33228 ddemeas 33234 eulerpartlemgvv 33375 bnj900 33940 bnj1189 34020 bnj1204 34023 bnj1398 34045 bnj1444 34054 bnj1445 34055 bnj1446 34056 bnj1447 34057 bnj1467 34065 bnj1518 34075 bnj1519 34076 iooelexlt 36243 fvineqsneq 36293 ptrest 36487 poimirlem26 36514 indexa 36601 filbcmb 36608 sdclem1 36611 heibor1 36678 dihglblem5 40169 unielss 41967 oaun3lem1 42124 suprnmpt 43870 disjinfi 43891 upbdrech 44015 ssfiunibd 44019 infxrunb2 44078 supxrunb3 44109 iccshift 44231 iooshift 44235 islpcn 44355 limsupre 44357 limclner 44367 limsupre3uzlem 44451 climuzlem 44459 xlimmnfv 44550 xlimpnfv 44554 itgperiod 44697 stoweidlem53 44769 stoweidlem57 44773 fourierdlem48 44870 fourierdlem51 44873 fourierdlem73 44895 fourierdlem81 44903 elaa2 44950 etransclem32 44982 sge0iunmptlemre 45131 voliunsge0lem 45188 meaiuninc3v 45200 isomenndlem 45246 ovnsubaddlem1 45286 hoidmvlelem1 45311 hoidmvlelem5 45315 smfaddlem1 45479 tworepnotupword 45600 2reu7 45819 2reu8 45820 f1oresf1o2 45999 mogoldbb 46453 2zrngagrp 46841 2zrngmmgm 46844 |
Copyright terms: Public domain | W3C validator |