![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfre1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3068 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfe1 2147 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
3 | 1, 2 | nfxfr 1849 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1775 Ⅎwnf 1779 ∈ wcel 2105 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-10 2138 |
This theorem depends on definitions: df-bi 207 df-ex 1776 df-nf 1780 df-rex 3068 |
This theorem is referenced by: 2rmorex 3762 2reurex 3768 reuan 3904 2reu4lem 4527 nfiu1 5031 nfiu1OLD 5032 reusv2lem3 5405 fvelimad 6975 fsnex 7302 eusvobj2 7422 fiun 7965 f1iun 7966 zfregcl 9631 scott0 9923 ac6c4 10518 lbzbi 12975 mreiincl 17640 lss1d 20978 neiptopnei 23155 neitr 23203 utopsnneiplem 24271 cfilucfil 24587 2sqmo 27495 nosupbnd2 27775 noinfbnd2 27790 mptelee 28924 isch3 31269 atom1d 32381 opreu2reuALT 32504 iinabrex 32588 xrofsup 32777 locfinreflem 33800 esumc 34031 esumrnmpt2 34048 hasheuni 34065 esumcvg 34066 esumcvgre 34071 voliune 34209 volfiniune 34210 ddemeas 34216 eulerpartlemgvv 34357 bnj900 34921 bnj1189 35001 bnj1204 35004 bnj1398 35026 bnj1444 35035 bnj1445 35036 bnj1446 35037 bnj1447 35038 bnj1467 35046 bnj1518 35056 bnj1519 35057 iooelexlt 37344 fvineqsneq 37394 ptrest 37605 poimirlem26 37632 indexa 37719 filbcmb 37726 sdclem1 37729 heibor1 37796 dihglblem5 41280 unielss 43206 oaun3lem1 43363 suprnmpt 45116 disjinfi 45134 upbdrech 45255 ssfiunibd 45259 infxrunb2 45317 supxrunb3 45348 iccshift 45470 iooshift 45474 islpcn 45594 limsupre 45596 limclner 45606 limsupre3uzlem 45690 climuzlem 45698 xlimmnfv 45789 xlimpnfv 45793 itgperiod 45936 stoweidlem53 46008 stoweidlem57 46012 fourierdlem48 46109 fourierdlem51 46112 fourierdlem73 46134 fourierdlem81 46142 elaa2 46189 etransclem32 46221 sge0iunmptlemre 46370 voliunsge0lem 46427 meaiuninc3v 46439 isomenndlem 46485 ovnsubaddlem1 46525 hoidmvlelem1 46550 hoidmvlelem5 46554 smfaddlem1 46718 tworepnotupword 46839 2reu7 47060 2reu8 47061 f1oresf1o2 47240 mogoldbb 47709 2zrngagrp 48092 2zrngmmgm 48095 |
Copyright terms: Public domain | W3C validator |