| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfre1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfe1 2151 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
| 3 | 1, 2 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-10 2142 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-rex 3054 |
| This theorem is referenced by: 2rmorex 3722 2reurex 3728 reuan 3856 2reu4lem 4481 nfiu1 4987 nfiu1OLD 4988 reusv2lem3 5350 fvelimad 6910 fsnex 7240 eusvobj2 7361 fiun 7901 f1iun 7902 zfregcl 9523 scott0 9815 ac6c4 10410 lbzbi 12871 mreiincl 17533 lss1d 20845 neiptopnei 22995 neitr 23043 utopsnneiplem 24111 cfilucfil 24423 2sqmo 27324 nosupbnd2 27604 noinfbnd2 27619 mptelee 28798 isch3 31143 atom1d 32255 opreu2reuALT 32379 iinabrex 32471 xrofsup 32663 locfinreflem 33803 esumc 34014 esumrnmpt2 34031 hasheuni 34048 esumcvg 34049 esumcvgre 34054 voliune 34192 volfiniune 34193 ddemeas 34199 eulerpartlemgvv 34340 bnj900 34892 bnj1189 34972 bnj1204 34975 bnj1398 34997 bnj1444 35006 bnj1445 35007 bnj1446 35008 bnj1447 35009 bnj1467 35017 bnj1518 35027 bnj1519 35028 iooelexlt 37323 fvineqsneq 37373 ptrest 37586 poimirlem26 37613 indexa 37700 filbcmb 37707 sdclem1 37710 heibor1 37777 dihglblem5 41265 unielss 43180 oaun3lem1 43336 suprnmpt 45141 disjinfi 45159 upbdrech 45276 ssfiunibd 45280 infxrunb2 45337 supxrunb3 45368 iccshift 45489 iooshift 45493 islpcn 45610 limsupre 45612 limclner 45622 limsupre3uzlem 45706 climuzlem 45714 xlimmnfv 45805 xlimpnfv 45809 itgperiod 45952 stoweidlem53 46024 stoweidlem57 46028 fourierdlem48 46125 fourierdlem51 46128 fourierdlem73 46150 fourierdlem81 46158 elaa2 46205 etransclem32 46237 sge0iunmptlemre 46386 voliunsge0lem 46443 meaiuninc3v 46455 isomenndlem 46501 ovnsubaddlem1 46541 hoidmvlelem1 46566 hoidmvlelem5 46570 smfaddlem1 46734 tworepnotupword 46857 2reu7 47085 2reu8 47086 f1oresf1o2 47265 mogoldbb 47759 2zrngagrp 48210 2zrngmmgm 48213 |
| Copyright terms: Public domain | W3C validator |