![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfre1 | Structured version Visualization version GIF version |
Description: The setvar 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3077 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfe1 2151 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
3 | 1, 2 | nfxfr 1851 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1777 Ⅎwnf 1781 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-10 2141 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 df-rex 3077 |
This theorem is referenced by: 2rmorex 3776 2reurex 3782 reuan 3918 2reu4lem 4545 nfiu1 5050 nfiu1OLD 5051 reusv2lem3 5418 fvelimad 6989 fsnex 7319 eusvobj2 7440 fiun 7983 f1iun 7984 zfregcl 9663 scott0 9955 ac6c4 10550 lbzbi 13001 mreiincl 17654 lss1d 20984 neiptopnei 23161 neitr 23209 utopsnneiplem 24277 cfilucfil 24593 2sqmo 27499 nosupbnd2 27779 noinfbnd2 27794 mptelee 28928 isch3 31273 atom1d 32385 opreu2reuALT 32505 iinabrex 32591 xrofsup 32774 locfinreflem 33786 esumc 34015 esumrnmpt2 34032 hasheuni 34049 esumcvg 34050 esumcvgre 34055 voliune 34193 volfiniune 34194 ddemeas 34200 eulerpartlemgvv 34341 bnj900 34905 bnj1189 34985 bnj1204 34988 bnj1398 35010 bnj1444 35019 bnj1445 35020 bnj1446 35021 bnj1447 35022 bnj1467 35030 bnj1518 35040 bnj1519 35041 iooelexlt 37328 fvineqsneq 37378 ptrest 37579 poimirlem26 37606 indexa 37693 filbcmb 37700 sdclem1 37703 heibor1 37770 dihglblem5 41255 unielss 43179 oaun3lem1 43336 suprnmpt 45081 disjinfi 45099 upbdrech 45220 ssfiunibd 45224 infxrunb2 45283 supxrunb3 45314 iccshift 45436 iooshift 45440 islpcn 45560 limsupre 45562 limclner 45572 limsupre3uzlem 45656 climuzlem 45664 xlimmnfv 45755 xlimpnfv 45759 itgperiod 45902 stoweidlem53 45974 stoweidlem57 45978 fourierdlem48 46075 fourierdlem51 46078 fourierdlem73 46100 fourierdlem81 46108 elaa2 46155 etransclem32 46187 sge0iunmptlemre 46336 voliunsge0lem 46393 meaiuninc3v 46405 isomenndlem 46451 ovnsubaddlem1 46491 hoidmvlelem1 46516 hoidmvlelem5 46520 smfaddlem1 46684 tworepnotupword 46805 2reu7 47026 2reu8 47027 f1oresf1o2 47206 mogoldbb 47659 2zrngagrp 47972 2zrngmmgm 47975 |
Copyright terms: Public domain | W3C validator |