| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfre1 | Structured version Visualization version GIF version | ||
| Description: The setvar 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3057 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfe1 2153 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
| 3 | 1, 2 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1780 Ⅎwnf 1784 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-10 2144 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 df-rex 3057 |
| This theorem is referenced by: 2rmorex 3708 2reurex 3714 reuan 3842 2reu4lem 4469 nfiu1 4975 nfiu1OLD 4976 reusv2lem3 5336 fvelimad 6889 fsnex 7217 eusvobj2 7338 fiun 7875 f1iun 7876 zfregclOLD 9481 scott0 9779 ac6c4 10372 lbzbi 12834 mreiincl 17498 lss1d 20896 neiptopnei 23047 neitr 23095 utopsnneiplem 24162 cfilucfil 24474 2sqmo 27375 nosupbnd2 27655 noinfbnd2 27670 mptelee 28873 isch3 31221 atom1d 32333 opreu2reuALT 32456 iinabrex 32549 xrofsup 32750 locfinreflem 33853 esumc 34064 esumrnmpt2 34081 hasheuni 34098 esumcvg 34099 esumcvgre 34104 voliune 34242 volfiniune 34243 ddemeas 34249 eulerpartlemgvv 34389 bnj900 34941 bnj1189 35021 bnj1204 35024 bnj1398 35046 bnj1444 35055 bnj1445 35056 bnj1446 35057 bnj1447 35058 bnj1467 35066 bnj1518 35076 bnj1519 35077 iooelexlt 37404 fvineqsneq 37454 ptrest 37667 poimirlem26 37694 indexa 37781 filbcmb 37788 sdclem1 37791 heibor1 37858 dihglblem5 41345 unielss 43259 oaun3lem1 43415 suprnmpt 45219 disjinfi 45237 upbdrech 45354 ssfiunibd 45358 infxrunb2 45414 supxrunb3 45445 iccshift 45566 iooshift 45570 islpcn 45685 limsupre 45687 limclner 45697 limsupre3uzlem 45781 climuzlem 45789 xlimmnfv 45880 xlimpnfv 45884 itgperiod 46027 stoweidlem53 46099 stoweidlem57 46103 fourierdlem48 46200 fourierdlem51 46203 fourierdlem73 46225 fourierdlem81 46233 elaa2 46280 etransclem32 46312 sge0iunmptlemre 46461 voliunsge0lem 46518 meaiuninc3v 46530 isomenndlem 46576 ovnsubaddlem1 46616 hoidmvlelem1 46641 hoidmvlelem5 46645 smfaddlem1 46809 2reu7 47150 2reu8 47151 f1oresf1o2 47330 mogoldbb 47824 2zrngagrp 48288 2zrngmmgm 48291 |
| Copyright terms: Public domain | W3C validator |