| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfii1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by NM, 15-Oct-2003.) |
| Ref | Expression |
|---|---|
| nfii1 | ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iin 4954 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
| 2 | nfra1 3259 | . . 3 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
| 3 | 2 | nfab 2897 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| 4 | 1, 3 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cab 2707 Ⅎwnfc 2876 ∀wral 3044 ∩ ciin 4952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-iin 4954 |
| This theorem is referenced by: dmiin 5906 scott0 9815 gruiin 10739 zarclsiin 33854 iinssiin 45116 iooiinicc 45533 iooiinioc 45547 fnlimfvre 45665 fnlimabslt 45670 meaiininclem 46477 hspdifhsp 46607 smflimlem2 46763 smflim 46768 smflimmpt 46801 smfsuplem1 46802 smfsupmpt 46806 smfsupxr 46807 smfinflem 46808 smfinfmpt 46810 smflimsuplem7 46817 smflimsuplem8 46818 smflimsupmpt 46820 smfliminfmpt 46823 fsupdm 46833 finfdm 46837 iinfssc 49039 iinfsubc 49040 |
| Copyright terms: Public domain | W3C validator |