MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfii1 Structured version   Visualization version   GIF version

Theorem nfii1 4966
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
nfii1 𝑥 𝑥𝐴 𝐵

Proof of Theorem nfii1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iin 4934 . 2 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
2 nfra1 3264 . . 3 𝑥𝑥𝐴 𝑦𝐵
32nfab 2911 . 2 𝑥{𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
41, 3nfcxfr 2903 1 𝑥 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2104  {cab 2713  wnfc 2885  wral 3062   ciin 4932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-iin 4934
This theorem is referenced by:  dmiin  5874  scott0  9692  gruiin  10616  zarclsiin  31870  iinssiin  42892  iooiinicc  43309  iooiinioc  43323  fnlimfvre  43444  fnlimabslt  43449  meaiininclem  44254  hspdifhsp  44384  smflimlem2  44540  smflim  44545  smflimmpt  44578  smfsuplem1  44579  smfsupmpt  44583  smfsupxr  44584  smfinflem  44585  smfinfmpt  44587  smflimsuplem7  44594  smflimsuplem8  44595  smflimsupmpt  44597  smfliminfmpt  44600
  Copyright terms: Public domain W3C validator