MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfii1 Structured version   Visualization version   GIF version

Theorem nfii1 4993
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
nfii1 𝑥 𝑥𝐴 𝐵

Proof of Theorem nfii1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iin 4958 . 2 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
2 nfra1 3261 . . 3 𝑥𝑥𝐴 𝑦𝐵
32nfab 2897 . 2 𝑥{𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
41, 3nfcxfr 2889 1 𝑥 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {cab 2707  wnfc 2876  wral 3044   ciin 4956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-iin 4958
This theorem is referenced by:  dmiin  5917  scott0  9839  gruiin  10763  zarclsiin  33861  iinssiin  45123  iooiinicc  45540  iooiinioc  45554  fnlimfvre  45672  fnlimabslt  45677  meaiininclem  46484  hspdifhsp  46614  smflimlem2  46770  smflim  46775  smflimmpt  46808  smfsuplem1  46809  smfsupmpt  46813  smfsupxr  46814  smfinflem  46815  smfinfmpt  46817  smflimsuplem7  46824  smflimsuplem8  46825  smflimsupmpt  46827  smfliminfmpt  46830  fsupdm  46840  finfdm  46844  iinfssc  49046  iinfsubc  49047
  Copyright terms: Public domain W3C validator