| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfii1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by NM, 15-Oct-2003.) |
| Ref | Expression |
|---|---|
| nfii1 | ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iin 4970 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
| 2 | nfra1 3266 | . . 3 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
| 3 | 2 | nfab 2904 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| 4 | 1, 3 | nfcxfr 2896 | 1 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 {cab 2713 Ⅎwnfc 2883 ∀wral 3051 ∩ ciin 4968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-iin 4970 |
| This theorem is referenced by: dmiin 5933 scott0 9900 gruiin 10824 zarclsiin 33902 iinssiin 45153 iooiinicc 45571 iooiinioc 45585 fnlimfvre 45703 fnlimabslt 45708 meaiininclem 46515 hspdifhsp 46645 smflimlem2 46801 smflim 46806 smflimmpt 46839 smfsuplem1 46840 smfsupmpt 46844 smfsupxr 46845 smfinflem 46846 smfinfmpt 46848 smflimsuplem7 46855 smflimsuplem8 46856 smflimsupmpt 46858 smfliminfmpt 46861 fsupdm 46871 finfdm 46875 iinfssc 49024 iinfsubc 49025 |
| Copyright terms: Public domain | W3C validator |