MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfii1 Structured version   Visualization version   GIF version

Theorem nfii1 4989
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
nfii1 𝑥 𝑥𝐴 𝐵

Proof of Theorem nfii1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iin 4954 . 2 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
2 nfra1 3259 . . 3 𝑥𝑥𝐴 𝑦𝐵
32nfab 2897 . 2 𝑥{𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
41, 3nfcxfr 2889 1 𝑥 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {cab 2707  wnfc 2876  wral 3044   ciin 4952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-iin 4954
This theorem is referenced by:  dmiin  5906  scott0  9815  gruiin  10739  zarclsiin  33854  iinssiin  45116  iooiinicc  45533  iooiinioc  45547  fnlimfvre  45665  fnlimabslt  45670  meaiininclem  46477  hspdifhsp  46607  smflimlem2  46763  smflim  46768  smflimmpt  46801  smfsuplem1  46802  smfsupmpt  46806  smfsupxr  46807  smfinflem  46808  smfinfmpt  46810  smflimsuplem7  46817  smflimsuplem8  46818  smflimsupmpt  46820  smfliminfmpt  46823  fsupdm  46833  finfdm  46837  iinfssc  49039  iinfsubc  49040
  Copyright terms: Public domain W3C validator