| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfii1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by NM, 15-Oct-2003.) |
| Ref | Expression |
|---|---|
| nfii1 | ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iin 4961 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
| 2 | nfra1 3262 | . . 3 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
| 3 | 2 | nfab 2898 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| 4 | 1, 3 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cab 2708 Ⅎwnfc 2877 ∀wral 3045 ∩ ciin 4959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-iin 4961 |
| This theorem is referenced by: dmiin 5920 scott0 9846 gruiin 10770 zarclsiin 33868 iinssiin 45130 iooiinicc 45547 iooiinioc 45561 fnlimfvre 45679 fnlimabslt 45684 meaiininclem 46491 hspdifhsp 46621 smflimlem2 46777 smflim 46782 smflimmpt 46815 smfsuplem1 46816 smfsupmpt 46820 smfsupxr 46821 smfinflem 46822 smfinfmpt 46824 smflimsuplem7 46831 smflimsuplem8 46832 smflimsupmpt 46834 smfliminfmpt 46837 fsupdm 46847 finfdm 46851 iinfssc 49050 iinfsubc 49051 |
| Copyright terms: Public domain | W3C validator |