| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfii1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by NM, 15-Oct-2003.) |
| Ref | Expression |
|---|---|
| nfii1 | ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iin 4942 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
| 2 | nfra1 3256 | . . 3 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
| 3 | 2 | nfab 2900 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| 4 | 1, 3 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 {cab 2709 Ⅎwnfc 2879 ∀wral 3047 ∩ ciin 4940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-iin 4942 |
| This theorem is referenced by: dmiin 5892 scott0 9779 gruiin 10701 zarclsiin 33884 iinssiin 45236 iooiinicc 45652 iooiinioc 45666 fnlimfvre 45782 fnlimabslt 45787 meaiininclem 46594 hspdifhsp 46724 smflimlem2 46880 smflim 46885 smflimmpt 46918 smfsuplem1 46919 smfsupmpt 46923 smfsupxr 46924 smfinflem 46925 smfinfmpt 46927 smflimsuplem7 46934 smflimsuplem8 46935 smflimsupmpt 46937 smfliminfmpt 46940 fsupdm 46950 finfdm 46954 iinfssc 49168 iinfsubc 49169 |
| Copyright terms: Public domain | W3C validator |