![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfii1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
nfii1 | ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iin 5018 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
2 | nfra1 3290 | . . 3 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
3 | 2 | nfab 2914 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
4 | 1, 3 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {cab 2717 Ⅎwnfc 2893 ∀wral 3067 ∩ ciin 5016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-iin 5018 |
This theorem is referenced by: dmiin 5978 scott0 9955 gruiin 10879 zarclsiin 33817 iinssiin 45031 iooiinicc 45460 iooiinioc 45474 fnlimfvre 45595 fnlimabslt 45600 meaiininclem 46407 hspdifhsp 46537 smflimlem2 46693 smflim 46698 smflimmpt 46731 smfsuplem1 46732 smfsupmpt 46736 smfsupxr 46737 smfinflem 46738 smfinfmpt 46740 smflimsuplem7 46747 smflimsuplem8 46748 smflimsupmpt 46750 smfliminfmpt 46753 fsupdm 46763 finfdm 46767 |
Copyright terms: Public domain | W3C validator |