Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfii1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
nfii1 | ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iin 4932 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
2 | nfra1 3144 | . . 3 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
3 | 2 | nfab 2914 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
4 | 1, 3 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 {cab 2716 Ⅎwnfc 2888 ∀wral 3065 ∩ ciin 4930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-iin 4932 |
This theorem is referenced by: dmiin 5859 scott0 9628 gruiin 10550 zarclsiin 31800 iinssiin 42631 iooiinicc 43034 iooiinioc 43048 fnlimfvre 43169 fnlimabslt 43174 meaiininclem 43978 hspdifhsp 44108 smflimlem2 44258 smflim 44263 smflimmpt 44294 smfsuplem1 44295 smfsupmpt 44299 smfsupxr 44300 smfinflem 44301 smfinfmpt 44303 smflimsuplem7 44310 smflimsuplem8 44311 smflimsupmpt 44313 smfliminfmpt 44316 |
Copyright terms: Public domain | W3C validator |