Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfii1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
nfii1 | ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iin 4934 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} | |
2 | nfra1 3264 | . . 3 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 | |
3 | 2 | nfab 2911 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
4 | 1, 3 | nfcxfr 2903 | 1 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 {cab 2713 Ⅎwnfc 2885 ∀wral 3062 ∩ ciin 4932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-iin 4934 |
This theorem is referenced by: dmiin 5874 scott0 9692 gruiin 10616 zarclsiin 31870 iinssiin 42892 iooiinicc 43309 iooiinioc 43323 fnlimfvre 43444 fnlimabslt 43449 meaiininclem 44254 hspdifhsp 44384 smflimlem2 44540 smflim 44545 smflimmpt 44578 smfsuplem1 44579 smfsupmpt 44583 smfsupxr 44584 smfinflem 44585 smfinfmpt 44587 smflimsuplem7 44594 smflimsuplem8 44595 smflimsupmpt 44597 smfliminfmpt 44600 |
Copyright terms: Public domain | W3C validator |