![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfreu | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for restricted unique existence. (Contributed by NM, 30-Oct-2010.) (Revised by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
nfreu.1 | ⊢ Ⅎ𝑥𝐴 |
nfreu.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfreu | ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1900 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfreu.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfreu.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfreud 3293 | . 2 ⊢ (⊤ → Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑) |
7 | 6 | mptru 1661 | 1 ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1654 Ⅎwnf 1879 Ⅎwnfc 2928 ∃!wreu 3091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-mo 2591 df-eu 2609 df-cleq 2792 df-clel 2795 df-nfc 2930 df-reu 3096 |
This theorem is referenced by: sbcreu 3710 reuccats1OLD 13782 reuccatpfxs1 13817 2reu7 41968 2reu8 41969 |
Copyright terms: Public domain | W3C validator |