MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfreu Structured version   Visualization version   GIF version

Theorem nfreu 3427
Description: Bound-variable hypothesis builder for restricted unique existence. Usage of this theorem is discouraged because it depends on ax-13 2367. Use the weaker nfreuw 3406 when possible. (Contributed by NM, 30-Oct-2010.) (Revised by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfrmo.1 𝑥𝐴
nfrmo.2 𝑥𝜑
Assertion
Ref Expression
nfreu 𝑥∃!𝑦𝐴 𝜑

Proof of Theorem nfreu
StepHypRef Expression
1 nftru 1799 . . 3 𝑦
2 nfrmo.1 . . . 4 𝑥𝐴
32a1i 11 . . 3 (⊤ → 𝑥𝐴)
4 nfrmo.2 . . . 4 𝑥𝜑
54a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfreud 3425 . 2 (⊤ → Ⅎ𝑥∃!𝑦𝐴 𝜑)
76mptru 1541 1 𝑥∃!𝑦𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1535  wnf 1778  wnfc 2879  ∃!wreu 3370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-13 2367  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-mo 2530  df-eu 2559  df-cleq 2720  df-clel 2806  df-nfc 2881  df-reu 3373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator