MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfreu Structured version   Visualization version   GIF version

Theorem nfreu 3394
Description: Bound-variable hypothesis builder for restricted unique existence. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfreuw 3376 when possible. (Contributed by NM, 30-Oct-2010.) (Revised by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfrmo.1 𝑥𝐴
nfrmo.2 𝑥𝜑
Assertion
Ref Expression
nfreu 𝑥∃!𝑦𝐴 𝜑

Proof of Theorem nfreu
StepHypRef Expression
1 nftru 1805 . . 3 𝑦
2 nfrmo.1 . . . 4 𝑥𝐴
32a1i 11 . . 3 (⊤ → 𝑥𝐴)
4 nfrmo.2 . . . 4 𝑥𝜑
54a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
61, 3, 5nfreud 3392 . 2 (⊤ → Ⅎ𝑥∃!𝑦𝐴 𝜑)
76mptru 1548 1 𝑥∃!𝑦𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1542  wnf 1784  wnfc 2879  ∃!wreu 3344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-13 2372  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-mo 2535  df-eu 2564  df-cleq 2723  df-clel 2806  df-nfc 2881  df-reu 3347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator