| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrmo | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for restricted uniqueness. Usage of this theorem is discouraged because it depends on ax-13 2375. Use the weaker nfrmow 3396 when possible. (Contributed by NM, 16-Jun-2017.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfrmo.1 | ⊢ Ⅎ𝑥𝐴 |
| nfrmo.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfrmo | ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo 3363 | . 2 ⊢ (∃*𝑦 ∈ 𝐴 𝜑 ↔ ∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nftru 1803 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
| 3 | nfcvf 2924 | . . . . . . 7 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) | |
| 4 | nfrmo.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐴) |
| 6 | 3, 5 | nfeld 2909 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 7 | nfrmo.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝜑 | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑) |
| 9 | 6, 8 | nfand 1896 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
| 11 | 2, 10 | nfmod2 2556 | . . 3 ⊢ (⊤ → Ⅎ𝑥∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) |
| 12 | 11 | mptru 1546 | . 2 ⊢ Ⅎ𝑥∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜑) |
| 13 | 1, 12 | nfxfr 1852 | 1 ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1537 ⊤wtru 1540 Ⅎwnf 1782 ∈ wcel 2107 ∃*wmo 2536 Ⅎwnfc 2882 ∃*wrmo 3362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2375 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-mo 2538 df-cleq 2726 df-clel 2808 df-nfc 2884 df-rmo 3363 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |