MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrmo Structured version   Visualization version   GIF version

Theorem nfrmo 3303
Description: Bound-variable hypothesis builder for restricted uniqueness. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfrmow 3301 when possible. (Contributed by NM, 16-Jun-2017.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfreu.1 𝑥𝐴
nfreu.2 𝑥𝜑
Assertion
Ref Expression
nfrmo 𝑥∃*𝑦𝐴 𝜑

Proof of Theorem nfrmo
StepHypRef Expression
1 df-rmo 3071 . 2 (∃*𝑦𝐴 𝜑 ↔ ∃*𝑦(𝑦𝐴𝜑))
2 nftru 1808 . . . 4 𝑦
3 nfcvf 2935 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
4 nfreu.1 . . . . . . . 8 𝑥𝐴
54a1i 11 . . . . . . 7 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝐴)
63, 5nfeld 2917 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦𝐴)
7 nfreu.2 . . . . . . 7 𝑥𝜑
87a1i 11 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑)
96, 8nfand 1901 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥(𝑦𝐴𝜑))
109adantl 481 . . . 4 ((⊤ ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦𝐴𝜑))
112, 10nfmod2 2558 . . 3 (⊤ → Ⅎ𝑥∃*𝑦(𝑦𝐴𝜑))
1211mptru 1546 . 2 𝑥∃*𝑦(𝑦𝐴𝜑)
131, 12nfxfr 1856 1 𝑥∃*𝑦𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wal 1537  wtru 1540  wnf 1787  wcel 2108  ∃*wmo 2538  wnfc 2886  ∃*wrmo 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-mo 2540  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rmo 3071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator