|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nfrmo | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for restricted uniqueness. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker nfrmow 3413 when possible. (Contributed by NM, 16-Jun-2017.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nfrmo.1 | ⊢ Ⅎ𝑥𝐴 | 
| nfrmo.2 | ⊢ Ⅎ𝑥𝜑 | 
| Ref | Expression | 
|---|---|
| nfrmo | ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rmo 3380 | . 2 ⊢ (∃*𝑦 ∈ 𝐴 𝜑 ↔ ∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nftru 1804 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
| 3 | nfcvf 2932 | . . . . . . 7 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) | |
| 4 | nfrmo.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝐴) | 
| 6 | 3, 5 | nfeld 2917 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 ∈ 𝐴) | 
| 7 | nfrmo.2 | . . . . . . 7 ⊢ Ⅎ𝑥𝜑 | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜑) | 
| 9 | 6, 8 | nfand 1897 | . . . . 5 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) | 
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) | 
| 11 | 2, 10 | nfmod2 2558 | . . 3 ⊢ (⊤ → Ⅎ𝑥∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) | 
| 12 | 11 | mptru 1547 | . 2 ⊢ Ⅎ𝑥∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜑) | 
| 13 | 1, 12 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ∧ wa 395 ∀wal 1538 ⊤wtru 1541 Ⅎwnf 1783 ∈ wcel 2108 ∃*wmo 2538 Ⅎwnfc 2890 ∃*wrmo 3379 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2540 df-cleq 2729 df-clel 2816 df-nfc 2892 df-rmo 3380 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |