MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfreud Structured version   Visualization version   GIF version

Theorem nfreud 3432
Description: Deduction version of nfreu 3434. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfrmod.1 𝑦𝜑
nfrmod.2 (𝜑𝑥𝐴)
nfrmod.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfreud (𝜑 → Ⅎ𝑥∃!𝑦𝐴 𝜓)

Proof of Theorem nfreud
StepHypRef Expression
1 df-reu 3380 . 2 (∃!𝑦𝐴 𝜓 ↔ ∃!𝑦(𝑦𝐴𝜓))
2 nfrmod.1 . . 3 𝑦𝜑
3 nfcvf 2931 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
43adantl 481 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝑦)
5 nfrmod.2 . . . . . 6 (𝜑𝑥𝐴)
65adantr 480 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝐴)
74, 6nfeld 2916 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦𝐴)
8 nfrmod.3 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
98adantr 480 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
107, 9nfand 1896 . . 3 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦𝐴𝜓))
112, 10nfeud2 2589 . 2 (𝜑 → Ⅎ𝑥∃!𝑦(𝑦𝐴𝜓))
121, 11nfxfrd 1853 1 (𝜑 → Ⅎ𝑥∃!𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1537  wnf 1782  wcel 2107  ∃!weu 2567  wnfc 2889  ∃!wreu 3377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-13 2376  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-mo 2539  df-eu 2568  df-cleq 2728  df-clel 2815  df-nfc 2891  df-reu 3380
This theorem is referenced by:  nfreu  3434
  Copyright terms: Public domain W3C validator