![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfreud | Structured version Visualization version GIF version |
Description: Deduction version of nfreu 3425. Usage of this theorem is discouraged because it depends on ax-13 2365. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfrmod.1 | ⊢ Ⅎ𝑦𝜑 |
nfrmod.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfrmod.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfreud | ⊢ (𝜑 → Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 3371 | . 2 ⊢ (∃!𝑦 ∈ 𝐴 𝜓 ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
2 | nfrmod.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfcvf 2926 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) | |
4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝑦) |
5 | nfrmod.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝐴) |
7 | 4, 6 | nfeld 2908 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦 ∈ 𝐴) |
8 | nfrmod.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
10 | 7, 9 | nfand 1892 | . . 3 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓)) |
11 | 2, 10 | nfeud2 2578 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
12 | 1, 11 | nfxfrd 1848 | 1 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1531 Ⅎwnf 1777 ∈ wcel 2098 ∃!weu 2556 Ⅎwnfc 2877 ∃!wreu 3368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-13 2365 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-mo 2528 df-eu 2557 df-cleq 2718 df-clel 2804 df-nfc 2879 df-reu 3371 |
This theorem is referenced by: nfreu 3425 |
Copyright terms: Public domain | W3C validator |