|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nfreud | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfreu 3435. Usage of this theorem is discouraged because it depends on ax-13 2377. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nfrmod.1 | ⊢ Ⅎ𝑦𝜑 | 
| nfrmod.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) | 
| nfrmod.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| Ref | Expression | 
|---|---|
| nfreud | ⊢ (𝜑 → Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-reu 3381 | . 2 ⊢ (∃!𝑦 ∈ 𝐴 𝜓 ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 2 | nfrmod.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfcvf 2932 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) | |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝑦) | 
| 5 | nfrmod.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝐴) | 
| 7 | 4, 6 | nfeld 2917 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦 ∈ 𝐴) | 
| 8 | nfrmod.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) | 
| 10 | 7, 9 | nfand 1897 | . . 3 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓)) | 
| 11 | 2, 10 | nfeud2 2590 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | 
| 12 | 1, 11 | nfxfrd 1854 | 1 ⊢ (𝜑 → Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 Ⅎwnf 1783 ∈ wcel 2108 ∃!weu 2568 Ⅎwnfc 2890 ∃!wreu 3378 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2540 df-eu 2569 df-cleq 2729 df-clel 2816 df-nfc 2892 df-reu 3381 | 
| This theorem is referenced by: nfreu 3435 | 
| Copyright terms: Public domain | W3C validator |