MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfreuw Structured version   Visualization version   GIF version

Theorem nfreuw 3422
Description: Bound-variable hypothesis builder for restricted unique existence. Version of nfreu 3442 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by NM, 30-Oct-2010.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) Avoid ax-9 2118, ax-ext 2711. (Revised by Wolf Lammen, 21-Nov-2024.)
Hypotheses
Ref Expression
nfrmow.1 𝑥𝐴
nfrmow.2 𝑥𝜑
Assertion
Ref Expression
nfreuw 𝑥∃!𝑦𝐴 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfreuw
StepHypRef Expression
1 df-reu 3389 . 2 (∃!𝑦𝐴 𝜑 ↔ ∃!𝑦(𝑦𝐴𝜑))
2 nfrmow.1 . . . . 5 𝑥𝐴
32nfcri 2900 . . . 4 𝑥 𝑦𝐴
4 nfrmow.2 . . . 4 𝑥𝜑
53, 4nfan 1898 . . 3 𝑥(𝑦𝐴𝜑)
65nfeuw 2596 . 2 𝑥∃!𝑦(𝑦𝐴𝜑)
71, 6nfxfr 1851 1 𝑥∃!𝑦𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1781  wcel 2108  ∃!weu 2571  wnfc 2893  ∃!wreu 3386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-10 2141  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-mo 2543  df-eu 2572  df-clel 2819  df-nfc 2895  df-reu 3389
This theorem is referenced by:  sbcreu  3898  reuccatpfxs1  14795  2reu7  47026  2reu8  47027
  Copyright terms: Public domain W3C validator