Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfreuw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for restricted unique existence. Version of nfreu 3302 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 30-Oct-2010.) (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfreuw.1 | ⊢ Ⅎ𝑥𝐴 |
nfreuw.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfreuw | ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 3070 | . . 3 ⊢ (∃!𝑦 ∈ 𝐴 𝜑 ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
2 | nftru 1808 | . . . 4 ⊢ Ⅎ𝑦⊤ | |
3 | nfcvd 2907 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑥𝑦) | |
4 | nfreuw.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
5 | 4 | a1i 11 | . . . . . 6 ⊢ (⊤ → Ⅎ𝑥𝐴) |
6 | 3, 5 | nfeld 2917 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥 𝑦 ∈ 𝐴) |
7 | nfreuw.2 | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → Ⅎ𝑥𝜑) |
9 | 6, 8 | nfand 1901 | . . . 4 ⊢ (⊤ → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑)) |
10 | 2, 9 | nfeudw 2591 | . . 3 ⊢ (⊤ → Ⅎ𝑥∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) |
11 | 1, 10 | nfxfrd 1857 | . 2 ⊢ (⊤ → Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑) |
12 | 11 | mptru 1546 | 1 ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ⊤wtru 1540 Ⅎwnf 1787 ∈ wcel 2108 ∃!weu 2568 Ⅎwnfc 2886 ∃!wreu 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-mo 2540 df-eu 2569 df-cleq 2730 df-clel 2817 df-nfc 2888 df-reu 3070 |
This theorem is referenced by: sbcreu 3805 reuccatpfxs1 14388 2reu7 44490 2reu8 44491 |
Copyright terms: Public domain | W3C validator |