Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfreuw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for restricted unique existence. Version of nfreu 3308 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 30-Oct-2010.) (Revised by Gino Giotto, 10-Jan-2024.) Avoid ax-9 2116, ax-ext 2709. (Revised by Wolf Lammen, 21-Nov-2024.) |
Ref | Expression |
---|---|
nfreuw.1 | ⊢ Ⅎ𝑥𝐴 |
nfreuw.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfreuw | ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 3072 | . 2 ⊢ (∃!𝑦 ∈ 𝐴 𝜑 ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfreuw.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfreuw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 3, 4 | nfan 1902 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
6 | 5 | nfeuw 2593 | . 2 ⊢ Ⅎ𝑥∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜑) |
7 | 1, 6 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 Ⅎwnf 1786 ∈ wcel 2106 ∃!weu 2568 Ⅎwnfc 2887 ∃!wreu 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-mo 2540 df-eu 2569 df-clel 2816 df-nfc 2889 df-reu 3072 |
This theorem is referenced by: sbcreu 3809 reuccatpfxs1 14460 2reu7 44603 2reu8 44604 |
Copyright terms: Public domain | W3C validator |