| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrexd | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfrex 3359. Usage of this theorem is discouraged because it depends on ax-13 2377. See nfrexdw 3294 for a version with a disjoint variable condition, but not requiring ax-13 2377. (Contributed by Mario Carneiro, 14-Oct-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfrald.1 | ⊢ Ⅎ𝑦𝜑 |
| nfrald.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfrald.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfrexd | ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 3064 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) | |
| 2 | nfrald.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfrald.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 4 | nfrald.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 5 | 4 | nfnd 1858 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| 6 | 2, 3, 5 | nfrald 3356 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 ¬ 𝜓) |
| 7 | 6 | nfnd 1858 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
| 8 | 1, 7 | nfxfrd 1854 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1783 Ⅎwnfc 2884 ∀wral 3052 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: nfrex 3359 nfiundg 49506 |
| Copyright terms: Public domain | W3C validator |