| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrexd | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfrex 3341. Usage of this theorem is discouraged because it depends on ax-13 2372. See nfrexdw 3278 for a version with a disjoint variable condition, but not requiring ax-13 2372. (Contributed by Mario Carneiro, 14-Oct-2016.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfrald.1 | ⊢ Ⅎ𝑦𝜑 |
| nfrald.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfrald.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfrexd | ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 3059 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) | |
| 2 | nfrald.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfrald.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 4 | nfrald.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 5 | 4 | nfnd 1859 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| 6 | 2, 3, 5 | nfrald 3338 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 ¬ 𝜓) |
| 7 | 6 | nfnd 1859 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
| 8 | 1, 7 | nfxfrd 1855 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1784 Ⅎwnfc 2879 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: nfrex 3341 nfiundg 49775 |
| Copyright terms: Public domain | W3C validator |