MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrexd Structured version   Visualization version   GIF version

Theorem nfrexd 3226
Description: Deduction version of nfrex 3228. (Contributed by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2371. See nfrexdg 3227 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
Hypotheses
Ref Expression
nfrexd.1 𝑦𝜑
nfrexd.2 (𝜑𝑥𝐴)
nfrexd.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfrexd (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfrexd
StepHypRef Expression
1 dfrex2 3161 . 2 (∃𝑦𝐴 𝜓 ↔ ¬ ∀𝑦𝐴 ¬ 𝜓)
2 nfrexd.1 . . . 4 𝑦𝜑
3 nfrexd.2 . . . 4 (𝜑𝑥𝐴)
4 nfrexd.3 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
54nfnd 1866 . . . 4 (𝜑 → Ⅎ𝑥 ¬ 𝜓)
62, 3, 5nfraldw 3144 . . 3 (𝜑 → Ⅎ𝑥𝑦𝐴 ¬ 𝜓)
76nfnd 1866 . 2 (𝜑 → Ⅎ𝑥 ¬ ∀𝑦𝐴 ¬ 𝜓)
81, 7nfxfrd 1861 1 (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wnf 1791  wnfc 2884  wral 3061  wrex 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-10 2141  ax-11 2158  ax-12 2175
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ex 1788  df-nf 1792  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067
This theorem is referenced by:  nfrex  3228  nfunid  4825  nfttrcld  33509  nfiund  46051
  Copyright terms: Public domain W3C validator