Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfrexd | Structured version Visualization version GIF version |
Description: Deduction version of nfrex 3237. (Contributed by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2372. See nfrexdg 3236 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfrexd.1 | ⊢ Ⅎ𝑦𝜑 |
nfrexd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfrexd.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfrexd | ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 3166 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) | |
2 | nfrexd.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | nfrexd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | nfrexd.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | 4 | nfnd 1862 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
6 | 2, 3, 5 | nfraldw 3146 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 ¬ 𝜓) |
7 | 6 | nfnd 1862 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
8 | 1, 7 | nfxfrd 1857 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1787 Ⅎwnfc 2886 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 |
This theorem is referenced by: nfrex 3237 nfunid 4842 nfttrcld 33696 nfiund 46266 |
Copyright terms: Public domain | W3C validator |