Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfrexd | Structured version Visualization version GIF version |
Description: Deduction version of nfrex 3242. (Contributed by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2372. See nfrexdg 3241 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfrexd.1 | ⊢ Ⅎ𝑦𝜑 |
nfrexd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfrexd.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfrexd | ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 3170 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) | |
2 | nfrexd.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | nfrexd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | nfrexd.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | 4 | nfnd 1861 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
6 | 2, 3, 5 | nfraldw 3148 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 ¬ 𝜓) |
7 | 6 | nfnd 1861 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
8 | 1, 7 | nfxfrd 1856 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1786 Ⅎwnfc 2887 ∀wral 3064 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 |
This theorem is referenced by: nfrex 3242 nfunid 4845 nfttrcld 9468 nfiund 46380 |
Copyright terms: Public domain | W3C validator |