Step | Hyp | Ref
| Expression |
1 | | upbdrech.c |
. . 3
⊢ 𝐶 = sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) |
2 | | upbdrech.b |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
3 | 2 | ralrimiva 3103 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ ℝ) |
4 | | nfra1 3144 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ∈ ℝ |
5 | | nfv 1917 |
. . . . . . 7
⊢
Ⅎ𝑥 𝑧 ∈ ℝ |
6 | | simp3 1137 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
𝐴 𝐵 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵) |
7 | | rspa 3132 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 𝐵 ∈ ℝ ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
8 | 7 | 3adant3 1131 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
𝐴 𝐵 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝐵 ∈ ℝ) |
9 | 6, 8 | eqeltrd 2839 |
. . . . . . . 8
⊢
((∀𝑥 ∈
𝐴 𝐵 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ) |
10 | 9 | 3exp 1118 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ ℝ → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑧 ∈ ℝ))) |
11 | 4, 5, 10 | rexlimd 3250 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ ℝ → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ ℝ)) |
12 | 11 | abssdv 4002 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ ℝ → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ) |
13 | 3, 12 | syl 17 |
. . . 4
⊢ (𝜑 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ) |
14 | | upbdrech.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ≠ ∅) |
15 | | eqidd 2739 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐵) |
16 | 15 | rgen 3074 |
. . . . . . 7
⊢
∀𝑥 ∈
𝐴 𝐵 = 𝐵 |
17 | | r19.2z 4425 |
. . . . . . 7
⊢ ((𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 = 𝐵) → ∃𝑥 ∈ 𝐴 𝐵 = 𝐵) |
18 | 14, 16, 17 | sylancl 586 |
. . . . . 6
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐵 = 𝐵) |
19 | | nfv 1917 |
. . . . . . 7
⊢
Ⅎ𝑥𝜑 |
20 | | nfre1 3239 |
. . . . . . . 8
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑧 = 𝐵 |
21 | 20 | nfex 2318 |
. . . . . . 7
⊢
Ⅎ𝑥∃𝑧∃𝑥 ∈ 𝐴 𝑧 = 𝐵 |
22 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
23 | | elex 3450 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℝ → 𝐵 ∈ V) |
24 | 2, 23 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ V) |
25 | | isset 3445 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ V ↔ ∃𝑧 𝑧 = 𝐵) |
26 | 24, 25 | sylib 217 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑧 𝑧 = 𝐵) |
27 | | rspe 3237 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑧 𝑧 = 𝐵) → ∃𝑥 ∈ 𝐴 ∃𝑧 𝑧 = 𝐵) |
28 | 22, 26, 27 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 ∃𝑧 𝑧 = 𝐵) |
29 | | rexcom4 3233 |
. . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐴 ∃𝑧 𝑧 = 𝐵 ↔ ∃𝑧∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
30 | 28, 29 | sylib 217 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑧∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
31 | 30 | 3adant3 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 = 𝐵) → ∃𝑧∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
32 | 31 | 3exp 1118 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝐵 = 𝐵 → ∃𝑧∃𝑥 ∈ 𝐴 𝑧 = 𝐵))) |
33 | 19, 21, 32 | rexlimd 3250 |
. . . . . 6
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝐵 = 𝐵 → ∃𝑧∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
34 | 18, 33 | mpd 15 |
. . . . 5
⊢ (𝜑 → ∃𝑧∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
35 | | abn0 4314 |
. . . . 5
⊢ ({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ≠ ∅ ↔ ∃𝑧∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
36 | 34, 35 | sylibr 233 |
. . . 4
⊢ (𝜑 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ≠ ∅) |
37 | | upbdrech.bd |
. . . . 5
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
38 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑤 ∈ V |
39 | | eqeq1 2742 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → (𝑧 = 𝐵 ↔ 𝑤 = 𝐵)) |
40 | 39 | rexbidv 3226 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑤 = 𝐵)) |
41 | 38, 40 | elab 3609 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝑤 = 𝐵) |
42 | 41 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} → ∃𝑥 ∈ 𝐴 𝑤 = 𝐵) |
43 | 42 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) → ∃𝑥 ∈ 𝐴 𝑤 = 𝐵) |
44 | | nfra1 3144 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 |
45 | 19, 44 | nfan 1902 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
46 | 20 | nfsab 2728 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥 𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} |
47 | 45, 46 | nfan 1902 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) |
48 | | nfv 1917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑤 ≤ 𝑦 |
49 | | simp3 1137 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵) → 𝑤 = 𝐵) |
50 | | simp1r 1197 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵) → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
51 | | simp2 1136 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵) → 𝑥 ∈ 𝐴) |
52 | | rspa 3132 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑥 ∈
𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝑦) |
53 | 50, 51, 52 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵) → 𝐵 ≤ 𝑦) |
54 | 49, 53 | eqbrtrd 5096 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵) → 𝑤 ≤ 𝑦) |
55 | 54 | 3exp 1118 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → (𝑥 ∈ 𝐴 → (𝑤 = 𝐵 → 𝑤 ≤ 𝑦))) |
56 | 55 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) → (𝑥 ∈ 𝐴 → (𝑤 = 𝐵 → 𝑤 ≤ 𝑦))) |
57 | 47, 48, 56 | rexlimd 3250 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) → (∃𝑥 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑦)) |
58 | 43, 57 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) → 𝑤 ≤ 𝑦) |
59 | 58 | ralrimiva 3103 |
. . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑦) |
60 | 59 | 3adant2 1130 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑦) |
61 | 60 | 3exp 1118 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ ℝ → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑦))) |
62 | 61 | reximdvai 3200 |
. . . . 5
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑦)) |
63 | 37, 62 | mpd 15 |
. . . 4
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑦) |
64 | | suprcl 11935 |
. . . 4
⊢ (({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑦) → sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) ∈
ℝ) |
65 | 13, 36, 63, 64 | syl3anc 1370 |
. . 3
⊢ (𝜑 → sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) ∈
ℝ) |
66 | 1, 65 | eqeltrid 2843 |
. 2
⊢ (𝜑 → 𝐶 ∈ ℝ) |
67 | 13 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ) |
68 | 30, 35 | sylibr 233 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ≠ ∅) |
69 | 63 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑦) |
70 | | elabrexg 42589 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) |
71 | 22, 2, 70 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) |
72 | | suprub 11936 |
. . . . 5
⊢ ((({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑦) ∧ 𝐵 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) → 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) |
73 | 67, 68, 69, 71, 72 | syl31anc 1372 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) |
74 | 73, 1 | breqtrrdi 5116 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
75 | 74 | ralrimiva 3103 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
76 | 66, 75 | jca 512 |
1
⊢ (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |