| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | upbdrech.c | . . 3
⊢ 𝐶 = sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) | 
| 2 |  | upbdrech.b | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | 
| 3 | 2 | ralrimiva 3146 | . . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ ℝ) | 
| 4 |  | nfra1 3284 | . . . . . . 7
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ∈ ℝ | 
| 5 |  | nfv 1914 | . . . . . . 7
⊢
Ⅎ𝑥 𝑧 ∈ ℝ | 
| 6 |  | simp3 1139 | . . . . . . . . 9
⊢
((∀𝑥 ∈
𝐴 𝐵 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵) | 
| 7 |  | rspa 3248 | . . . . . . . . . 10
⊢
((∀𝑥 ∈
𝐴 𝐵 ∈ ℝ ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | 
| 8 | 7 | 3adant3 1133 | . . . . . . . . 9
⊢
((∀𝑥 ∈
𝐴 𝐵 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝐵 ∈ ℝ) | 
| 9 | 6, 8 | eqeltrd 2841 | . . . . . . . 8
⊢
((∀𝑥 ∈
𝐴 𝐵 ∈ ℝ ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ) | 
| 10 | 9 | 3exp 1120 | . . . . . . 7
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ ℝ → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑧 ∈ ℝ))) | 
| 11 | 4, 5, 10 | rexlimd 3266 | . . . . . 6
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ ℝ → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ ℝ)) | 
| 12 | 11 | abssdv 4068 | . . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ ℝ → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ) | 
| 13 | 3, 12 | syl 17 | . . . 4
⊢ (𝜑 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ) | 
| 14 |  | upbdrech.a | . . . . . . 7
⊢ (𝜑 → 𝐴 ≠ ∅) | 
| 15 |  | eqidd 2738 | . . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐵) | 
| 16 | 15 | rgen 3063 | . . . . . . 7
⊢
∀𝑥 ∈
𝐴 𝐵 = 𝐵 | 
| 17 |  | r19.2z 4495 | . . . . . . 7
⊢ ((𝐴 ≠ ∅ ∧
∀𝑥 ∈ 𝐴 𝐵 = 𝐵) → ∃𝑥 ∈ 𝐴 𝐵 = 𝐵) | 
| 18 | 14, 16, 17 | sylancl 586 | . . . . . 6
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝐵 = 𝐵) | 
| 19 |  | nfv 1914 | . . . . . . 7
⊢
Ⅎ𝑥𝜑 | 
| 20 |  | nfre1 3285 | . . . . . . . 8
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑧 = 𝐵 | 
| 21 | 20 | nfex 2324 | . . . . . . 7
⊢
Ⅎ𝑥∃𝑧∃𝑥 ∈ 𝐴 𝑧 = 𝐵 | 
| 22 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | 
| 23 |  | elex 3501 | . . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℝ → 𝐵 ∈ V) | 
| 24 | 2, 23 | syl 17 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ V) | 
| 25 |  | isset 3494 | . . . . . . . . . . . 12
⊢ (𝐵 ∈ V ↔ ∃𝑧 𝑧 = 𝐵) | 
| 26 | 24, 25 | sylib 218 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑧 𝑧 = 𝐵) | 
| 27 |  | rspe 3249 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑧 𝑧 = 𝐵) → ∃𝑥 ∈ 𝐴 ∃𝑧 𝑧 = 𝐵) | 
| 28 | 22, 26, 27 | syl2anc 584 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 ∃𝑧 𝑧 = 𝐵) | 
| 29 |  | rexcom4 3288 | . . . . . . . . . 10
⊢
(∃𝑥 ∈
𝐴 ∃𝑧 𝑧 = 𝐵 ↔ ∃𝑧∃𝑥 ∈ 𝐴 𝑧 = 𝐵) | 
| 30 | 28, 29 | sylib 218 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑧∃𝑥 ∈ 𝐴 𝑧 = 𝐵) | 
| 31 | 30 | 3adant3 1133 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 = 𝐵) → ∃𝑧∃𝑥 ∈ 𝐴 𝑧 = 𝐵) | 
| 32 | 31 | 3exp 1120 | . . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝐵 = 𝐵 → ∃𝑧∃𝑥 ∈ 𝐴 𝑧 = 𝐵))) | 
| 33 | 19, 21, 32 | rexlimd 3266 | . . . . . 6
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝐵 = 𝐵 → ∃𝑧∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) | 
| 34 | 18, 33 | mpd 15 | . . . . 5
⊢ (𝜑 → ∃𝑧∃𝑥 ∈ 𝐴 𝑧 = 𝐵) | 
| 35 |  | abn0 4385 | . . . . 5
⊢ ({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ≠ ∅ ↔ ∃𝑧∃𝑥 ∈ 𝐴 𝑧 = 𝐵) | 
| 36 | 34, 35 | sylibr 234 | . . . 4
⊢ (𝜑 → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ≠ ∅) | 
| 37 |  | upbdrech.bd | . . . . 5
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | 
| 38 |  | vex 3484 | . . . . . . . . . . . . 13
⊢ 𝑤 ∈ V | 
| 39 |  | eqeq1 2741 | . . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → (𝑧 = 𝐵 ↔ 𝑤 = 𝐵)) | 
| 40 | 39 | rexbidv 3179 | . . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑤 = 𝐵)) | 
| 41 | 38, 40 | elab 3679 | . . . . . . . . . . . 12
⊢ (𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝑤 = 𝐵) | 
| 42 | 41 | biimpi 216 | . . . . . . . . . . 11
⊢ (𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} → ∃𝑥 ∈ 𝐴 𝑤 = 𝐵) | 
| 43 | 42 | adantl 481 | . . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) → ∃𝑥 ∈ 𝐴 𝑤 = 𝐵) | 
| 44 |  | nfra1 3284 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 | 
| 45 | 19, 44 | nfan 1899 | . . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | 
| 46 | 20 | nfsab 2727 | . . . . . . . . . . . 12
⊢
Ⅎ𝑥 𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} | 
| 47 | 45, 46 | nfan 1899 | . . . . . . . . . . 11
⊢
Ⅎ𝑥((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) | 
| 48 |  | nfv 1914 | . . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑤 ≤ 𝑦 | 
| 49 |  | simp3 1139 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵) → 𝑤 = 𝐵) | 
| 50 |  | simp1r 1199 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵) → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) | 
| 51 |  | simp2 1138 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵) → 𝑥 ∈ 𝐴) | 
| 52 |  | rspa 3248 | . . . . . . . . . . . . . . 15
⊢
((∀𝑥 ∈
𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝑦) | 
| 53 | 50, 51, 52 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵) → 𝐵 ≤ 𝑦) | 
| 54 | 49, 53 | eqbrtrd 5165 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑥 ∈ 𝐴 ∧ 𝑤 = 𝐵) → 𝑤 ≤ 𝑦) | 
| 55 | 54 | 3exp 1120 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → (𝑥 ∈ 𝐴 → (𝑤 = 𝐵 → 𝑤 ≤ 𝑦))) | 
| 56 | 55 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) → (𝑥 ∈ 𝐴 → (𝑤 = 𝐵 → 𝑤 ≤ 𝑦))) | 
| 57 | 47, 48, 56 | rexlimd 3266 | . . . . . . . . . 10
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) → (∃𝑥 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑦)) | 
| 58 | 43, 57 | mpd 15 | . . . . . . . . 9
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) → 𝑤 ≤ 𝑦) | 
| 59 | 58 | ralrimiva 3146 | . . . . . . . 8
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑦) | 
| 60 | 59 | 3adant2 1132 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑦) | 
| 61 | 60 | 3exp 1120 | . . . . . 6
⊢ (𝜑 → (𝑦 ∈ ℝ → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑦))) | 
| 62 | 61 | reximdvai 3165 | . . . . 5
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑦)) | 
| 63 | 37, 62 | mpd 15 | . . . 4
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑦) | 
| 64 |  | suprcl 12228 | . . . 4
⊢ (({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑦) → sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) ∈
ℝ) | 
| 65 | 13, 36, 63, 64 | syl3anc 1373 | . . 3
⊢ (𝜑 → sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < ) ∈
ℝ) | 
| 66 | 1, 65 | eqeltrid 2845 | . 2
⊢ (𝜑 → 𝐶 ∈ ℝ) | 
| 67 | 13 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ) | 
| 68 | 30, 35 | sylibr 234 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ≠ ∅) | 
| 69 | 63 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑦) | 
| 70 |  | elabrexg 7263 | . . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) | 
| 71 | 22, 2, 70 | syl2anc 584 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) | 
| 72 |  | suprub 12229 | . . . . 5
⊢ ((({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑦) ∧ 𝐵 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}) → 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) | 
| 73 | 67, 68, 69, 71, 72 | syl31anc 1375 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ sup({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵}, ℝ, < )) | 
| 74 | 73, 1 | breqtrrdi 5185 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) | 
| 75 | 74 | ralrimiva 3146 | . 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) | 
| 76 | 66, 75 | jca 511 | 1
⊢ (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |