Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upbdrech Structured version   Visualization version   GIF version

Theorem upbdrech 42734
Description: Choice of an upper bound for a nonempty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
upbdrech.a (𝜑𝐴 ≠ ∅)
upbdrech.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
upbdrech.bd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
upbdrech.c 𝐶 = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )
Assertion
Ref Expression
upbdrech (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem upbdrech
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 upbdrech.c . . 3 𝐶 = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )
2 upbdrech.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
32ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
4 nfra1 3142 . . . . . . 7 𝑥𝑥𝐴 𝐵 ∈ ℝ
5 nfv 1918 . . . . . . 7 𝑥 𝑧 ∈ ℝ
6 simp3 1136 . . . . . . . . 9 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴𝑧 = 𝐵) → 𝑧 = 𝐵)
7 rspa 3130 . . . . . . . . . 10 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
873adant3 1130 . . . . . . . . 9 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴𝑧 = 𝐵) → 𝐵 ∈ ℝ)
96, 8eqeltrd 2839 . . . . . . . 8 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴𝑧 = 𝐵) → 𝑧 ∈ ℝ)
1093exp 1117 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ ℝ → (𝑥𝐴 → (𝑧 = 𝐵𝑧 ∈ ℝ)))
114, 5, 10rexlimd 3245 . . . . . 6 (∀𝑥𝐴 𝐵 ∈ ℝ → (∃𝑥𝐴 𝑧 = 𝐵𝑧 ∈ ℝ))
1211abssdv 3998 . . . . 5 (∀𝑥𝐴 𝐵 ∈ ℝ → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ)
133, 12syl 17 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ)
14 upbdrech.a . . . . . . 7 (𝜑𝐴 ≠ ∅)
15 eqidd 2739 . . . . . . . 8 (𝑥𝐴𝐵 = 𝐵)
1615rgen 3073 . . . . . . 7 𝑥𝐴 𝐵 = 𝐵
17 r19.2z 4422 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 = 𝐵) → ∃𝑥𝐴 𝐵 = 𝐵)
1814, 16, 17sylancl 585 . . . . . 6 (𝜑 → ∃𝑥𝐴 𝐵 = 𝐵)
19 nfv 1918 . . . . . . 7 𝑥𝜑
20 nfre1 3234 . . . . . . . 8 𝑥𝑥𝐴 𝑧 = 𝐵
2120nfex 2322 . . . . . . 7 𝑥𝑧𝑥𝐴 𝑧 = 𝐵
22 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥𝐴)
23 elex 3440 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → 𝐵 ∈ V)
242, 23syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ V)
25 isset 3435 . . . . . . . . . . . 12 (𝐵 ∈ V ↔ ∃𝑧 𝑧 = 𝐵)
2624, 25sylib 217 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ∃𝑧 𝑧 = 𝐵)
27 rspe 3232 . . . . . . . . . . 11 ((𝑥𝐴 ∧ ∃𝑧 𝑧 = 𝐵) → ∃𝑥𝐴𝑧 𝑧 = 𝐵)
2822, 26, 27syl2anc 583 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∃𝑥𝐴𝑧 𝑧 = 𝐵)
29 rexcom4 3179 . . . . . . . . . 10 (∃𝑥𝐴𝑧 𝑧 = 𝐵 ↔ ∃𝑧𝑥𝐴 𝑧 = 𝐵)
3028, 29sylib 217 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∃𝑧𝑥𝐴 𝑧 = 𝐵)
31303adant3 1130 . . . . . . . 8 ((𝜑𝑥𝐴𝐵 = 𝐵) → ∃𝑧𝑥𝐴 𝑧 = 𝐵)
32313exp 1117 . . . . . . 7 (𝜑 → (𝑥𝐴 → (𝐵 = 𝐵 → ∃𝑧𝑥𝐴 𝑧 = 𝐵)))
3319, 21, 32rexlimd 3245 . . . . . 6 (𝜑 → (∃𝑥𝐴 𝐵 = 𝐵 → ∃𝑧𝑥𝐴 𝑧 = 𝐵))
3418, 33mpd 15 . . . . 5 (𝜑 → ∃𝑧𝑥𝐴 𝑧 = 𝐵)
35 abn0 4311 . . . . 5 ({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅ ↔ ∃𝑧𝑥𝐴 𝑧 = 𝐵)
3634, 35sylibr 233 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅)
37 upbdrech.bd . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
38 vex 3426 . . . . . . . . . . . . 13 𝑤 ∈ V
39 eqeq1 2742 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (𝑧 = 𝐵𝑤 = 𝐵))
4039rexbidv 3225 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (∃𝑥𝐴 𝑧 = 𝐵 ↔ ∃𝑥𝐴 𝑤 = 𝐵))
4138, 40elab 3602 . . . . . . . . . . . 12 (𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ↔ ∃𝑥𝐴 𝑤 = 𝐵)
4241biimpi 215 . . . . . . . . . . 11 (𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} → ∃𝑥𝐴 𝑤 = 𝐵)
4342adantl 481 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → ∃𝑥𝐴 𝑤 = 𝐵)
44 nfra1 3142 . . . . . . . . . . . . 13 𝑥𝑥𝐴 𝐵𝑦
4519, 44nfan 1903 . . . . . . . . . . . 12 𝑥(𝜑 ∧ ∀𝑥𝐴 𝐵𝑦)
4620nfsab 2728 . . . . . . . . . . . 12 𝑥 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
4745, 46nfan 1903 . . . . . . . . . . 11 𝑥((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
48 nfv 1918 . . . . . . . . . . 11 𝑥 𝑤𝑦
49 simp3 1136 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝑤 = 𝐵)
50 simp1r 1196 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → ∀𝑥𝐴 𝐵𝑦)
51 simp2 1135 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝑥𝐴)
52 rspa 3130 . . . . . . . . . . . . . . 15 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴) → 𝐵𝑦)
5350, 51, 52syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝐵𝑦)
5449, 53eqbrtrd 5092 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝑤𝑦)
55543exp 1117 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) → (𝑥𝐴 → (𝑤 = 𝐵𝑤𝑦)))
5655adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → (𝑥𝐴 → (𝑤 = 𝐵𝑤𝑦)))
5747, 48, 56rexlimd 3245 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → (∃𝑥𝐴 𝑤 = 𝐵𝑤𝑦))
5843, 57mpd 15 . . . . . . . . 9 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → 𝑤𝑦)
5958ralrimiva 3107 . . . . . . . 8 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
60593adant2 1129 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
61603exp 1117 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ → (∀𝑥𝐴 𝐵𝑦 → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)))
6261reximdvai 3199 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦))
6337, 62mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
64 suprcl 11865 . . . 4 (({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦) → sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ)
6513, 36, 63, 64syl3anc 1369 . . 3 (𝜑 → sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ)
661, 65eqeltrid 2843 . 2 (𝜑𝐶 ∈ ℝ)
6713adantr 480 . . . . 5 ((𝜑𝑥𝐴) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ)
6830, 35sylibr 233 . . . . 5 ((𝜑𝑥𝐴) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅)
6963adantr 480 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
70 elabrexg 42478 . . . . . 6 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
7122, 2, 70syl2anc 583 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
72 suprub 11866 . . . . 5 ((({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦) ∧ 𝐵 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
7367, 68, 69, 71, 72syl31anc 1371 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
7473, 1breqtrrdi 5112 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
7574ralrimiva 3107 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
7666, 75jca 511 1 (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  Vcvv 3422  wss 3883  c0 4253   class class class wbr 5070  supcsup 9129  cr 10801   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138
This theorem is referenced by:  upbdrech2  42737
  Copyright terms: Public domain W3C validator