Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upbdrech Structured version   Visualization version   GIF version

Theorem upbdrech 41035
Description: Choice of an upper bound for a nonempty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
upbdrech.a (𝜑𝐴 ≠ ∅)
upbdrech.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
upbdrech.bd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
upbdrech.c 𝐶 = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )
Assertion
Ref Expression
upbdrech (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem upbdrech
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 upbdrech.c . . 3 𝐶 = sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < )
2 upbdrech.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
32ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
4 nfra1 3162 . . . . . . 7 𝑥𝑥𝐴 𝐵 ∈ ℝ
5 nfv 1874 . . . . . . 7 𝑥 𝑧 ∈ ℝ
6 simp3 1119 . . . . . . . . 9 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴𝑧 = 𝐵) → 𝑧 = 𝐵)
7 rspa 3149 . . . . . . . . . 10 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
873adant3 1113 . . . . . . . . 9 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴𝑧 = 𝐵) → 𝐵 ∈ ℝ)
96, 8eqeltrd 2859 . . . . . . . 8 ((∀𝑥𝐴 𝐵 ∈ ℝ ∧ 𝑥𝐴𝑧 = 𝐵) → 𝑧 ∈ ℝ)
1093exp 1100 . . . . . . 7 (∀𝑥𝐴 𝐵 ∈ ℝ → (𝑥𝐴 → (𝑧 = 𝐵𝑧 ∈ ℝ)))
114, 5, 10rexlimd 3253 . . . . . 6 (∀𝑥𝐴 𝐵 ∈ ℝ → (∃𝑥𝐴 𝑧 = 𝐵𝑧 ∈ ℝ))
1211abssdv 3928 . . . . 5 (∀𝑥𝐴 𝐵 ∈ ℝ → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ)
133, 12syl 17 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ)
14 upbdrech.a . . . . . . 7 (𝜑𝐴 ≠ ∅)
15 eqidd 2772 . . . . . . . 8 (𝑥𝐴𝐵 = 𝐵)
1615rgen 3091 . . . . . . 7 𝑥𝐴 𝐵 = 𝐵
17 r19.2z 4317 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑥𝐴 𝐵 = 𝐵) → ∃𝑥𝐴 𝐵 = 𝐵)
1814, 16, 17sylancl 578 . . . . . 6 (𝜑 → ∃𝑥𝐴 𝐵 = 𝐵)
19 nfv 1874 . . . . . . 7 𝑥𝜑
20 nfre1 3244 . . . . . . . 8 𝑥𝑥𝐴 𝑧 = 𝐵
2120nfex 2265 . . . . . . 7 𝑥𝑧𝑥𝐴 𝑧 = 𝐵
22 simpr 477 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝑥𝐴)
23 elex 3426 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ → 𝐵 ∈ V)
242, 23syl 17 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵 ∈ V)
25 isset 3420 . . . . . . . . . . . 12 (𝐵 ∈ V ↔ ∃𝑧 𝑧 = 𝐵)
2624, 25sylib 210 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ∃𝑧 𝑧 = 𝐵)
27 rspe 3242 . . . . . . . . . . 11 ((𝑥𝐴 ∧ ∃𝑧 𝑧 = 𝐵) → ∃𝑥𝐴𝑧 𝑧 = 𝐵)
2822, 26, 27syl2anc 576 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∃𝑥𝐴𝑧 𝑧 = 𝐵)
29 rexcom4 3189 . . . . . . . . . 10 (∃𝑥𝐴𝑧 𝑧 = 𝐵 ↔ ∃𝑧𝑥𝐴 𝑧 = 𝐵)
3028, 29sylib 210 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∃𝑧𝑥𝐴 𝑧 = 𝐵)
31303adant3 1113 . . . . . . . 8 ((𝜑𝑥𝐴𝐵 = 𝐵) → ∃𝑧𝑥𝐴 𝑧 = 𝐵)
32313exp 1100 . . . . . . 7 (𝜑 → (𝑥𝐴 → (𝐵 = 𝐵 → ∃𝑧𝑥𝐴 𝑧 = 𝐵)))
3319, 21, 32rexlimd 3253 . . . . . 6 (𝜑 → (∃𝑥𝐴 𝐵 = 𝐵 → ∃𝑧𝑥𝐴 𝑧 = 𝐵))
3418, 33mpd 15 . . . . 5 (𝜑 → ∃𝑧𝑥𝐴 𝑧 = 𝐵)
35 abn0 4216 . . . . 5 ({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅ ↔ ∃𝑧𝑥𝐴 𝑧 = 𝐵)
3634, 35sylibr 226 . . . 4 (𝜑 → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅)
37 upbdrech.bd . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
38 vex 3411 . . . . . . . . . . . . 13 𝑤 ∈ V
39 eqeq1 2775 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (𝑧 = 𝐵𝑤 = 𝐵))
4039rexbidv 3235 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (∃𝑥𝐴 𝑧 = 𝐵 ↔ ∃𝑥𝐴 𝑤 = 𝐵))
4138, 40elab 3575 . . . . . . . . . . . 12 (𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ↔ ∃𝑥𝐴 𝑤 = 𝐵)
4241biimpi 208 . . . . . . . . . . 11 (𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} → ∃𝑥𝐴 𝑤 = 𝐵)
4342adantl 474 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → ∃𝑥𝐴 𝑤 = 𝐵)
44 nfra1 3162 . . . . . . . . . . . . 13 𝑥𝑥𝐴 𝐵𝑦
4519, 44nfan 1863 . . . . . . . . . . . 12 𝑥(𝜑 ∧ ∀𝑥𝐴 𝐵𝑦)
4620nfsab 2763 . . . . . . . . . . . 12 𝑥 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
4745, 46nfan 1863 . . . . . . . . . . 11 𝑥((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
48 nfv 1874 . . . . . . . . . . 11 𝑥 𝑤𝑦
49 simp3 1119 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝑤 = 𝐵)
50 simp1r 1179 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → ∀𝑥𝐴 𝐵𝑦)
51 simp2 1118 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝑥𝐴)
52 rspa 3149 . . . . . . . . . . . . . . 15 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴) → 𝐵𝑦)
5350, 51, 52syl2anc 576 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝐵𝑦)
5449, 53eqbrtrd 4947 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑥𝐴𝑤 = 𝐵) → 𝑤𝑦)
55543exp 1100 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) → (𝑥𝐴 → (𝑤 = 𝐵𝑤𝑦)))
5655adantr 473 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → (𝑥𝐴 → (𝑤 = 𝐵𝑤𝑦)))
5747, 48, 56rexlimd 3253 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → (∃𝑥𝐴 𝑤 = 𝐵𝑤𝑦))
5843, 57mpd 15 . . . . . . . . 9 (((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → 𝑤𝑦)
5958ralrimiva 3125 . . . . . . . 8 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
60593adant2 1112 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
61603exp 1100 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ → (∀𝑥𝐴 𝐵𝑦 → ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)))
6261reximdvai 3210 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦))
6337, 62mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
64 suprcl 11400 . . . 4 (({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦) → sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ)
6513, 36, 63, 64syl3anc 1352 . . 3 (𝜑 → sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ) ∈ ℝ)
661, 65syl5eqel 2863 . 2 (𝜑𝐶 ∈ ℝ)
6713adantr 473 . . . . 5 ((𝜑𝑥𝐴) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ)
6830, 35sylibr 226 . . . . 5 ((𝜑𝑥𝐴) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅)
6963adantr 473 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦)
70 elabrexg 40760 . . . . . 6 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
7122, 2, 70syl2anc 576 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵})
72 suprub 11401 . . . . 5 ((({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}𝑤𝑦) ∧ 𝐵 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}) → 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
7367, 68, 69, 71, 72syl31anc 1354 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ≤ sup({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}, ℝ, < ))
7473, 1syl6breqr 4967 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
7574ralrimiva 3125 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
7666, 75jca 504 1 (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1069   = wceq 1508  wex 1743  wcel 2051  {cab 2751  wne 2960  wral 3081  wrex 3082  Vcvv 3408  wss 3822  c0 4172   class class class wbr 4925  supcsup 8697  cr 10332   < clt 10472  cle 10473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-pre-sup 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-po 5322  df-so 5323  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-sup 8699  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671
This theorem is referenced by:  upbdrech2  41038
  Copyright terms: Public domain W3C validator