| Step | Hyp | Ref
| Expression |
| 1 | | ssfiunibd.fi |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 2 | | simpll 767 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ 𝑥) → 𝜑) |
| 3 | | 19.8a 2181 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → ∃𝑥(𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) |
| 4 | 3 | ancoms 458 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → ∃𝑥(𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) |
| 5 | | eluni 4910 |
. . . . . . . . 9
⊢ (𝑧 ∈ ∪ 𝐴
↔ ∃𝑥(𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) |
| 6 | 4, 5 | sylibr 234 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ ∪ 𝐴) |
| 7 | 6 | adantll 714 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ ∪ 𝐴) |
| 8 | | ssfiunibd.b |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ∪ 𝐴) → 𝐵 ∈ ℝ) |
| 9 | 2, 7, 8 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ 𝑥) → 𝐵 ∈ ℝ) |
| 10 | | ssfiunibd.bd |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑥 𝐵 ≤ 𝑦) |
| 11 | | eqid 2737 |
. . . . . 6
⊢ if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) = if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) |
| 12 | 9, 10, 11 | upbdrech2 45320 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ∈ ℝ ∧
∀𝑧 ∈ 𝑥 𝐵 ≤ if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )))) |
| 13 | 12 | simpld 494 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ∈
ℝ) |
| 14 | 13 | ralrimiva 3146 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ∈
ℝ) |
| 15 | | fimaxre3 12214 |
. . 3
⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ∈ ℝ) →
∃𝑤 ∈ ℝ
∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) |
| 16 | 1, 14, 15 | syl2anc 584 |
. 2
⊢ (𝜑 → ∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) |
| 17 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑧(𝜑 ∧ 𝑤 ∈ ℝ) |
| 18 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑧𝐴 |
| 19 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑧 𝑥 = ∅ |
| 20 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑧0 |
| 21 | | nfre1 3285 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧∃𝑧 ∈ 𝑥 𝑢 = 𝐵 |
| 22 | 21 | nfab 2911 |
. . . . . . . . . 10
⊢
Ⅎ𝑧{𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵} |
| 23 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑧ℝ |
| 24 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑧
< |
| 25 | 22, 23, 24 | nfsup 9491 |
. . . . . . . . 9
⊢
Ⅎ𝑧sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < ) |
| 26 | 19, 20, 25 | nfif 4556 |
. . . . . . . 8
⊢
Ⅎ𝑧if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) |
| 27 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑧
≤ |
| 28 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑧𝑤 |
| 29 | 26, 27, 28 | nfbr 5190 |
. . . . . . 7
⊢
Ⅎ𝑧if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤 |
| 30 | 18, 29 | nfralw 3311 |
. . . . . 6
⊢
Ⅎ𝑧∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤 |
| 31 | 17, 30 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑧((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) |
| 32 | | ssfiunibd.ssun |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ⊆ ∪ 𝐴) |
| 33 | 32 | sselda 3983 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ ∪ 𝐴) |
| 34 | 33, 5 | sylib 218 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∃𝑥(𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴)) |
| 35 | | exancom 1861 |
. . . . . . . . . 10
⊢
(∃𝑥(𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥)) |
| 36 | 34, 35 | sylib 218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥)) |
| 37 | | df-rex 3071 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝐴 𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥)) |
| 38 | 36, 37 | sylibr 234 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝑥) |
| 39 | 38 | ad4ant14 752 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑧 ∈ 𝐶) → ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝑥) |
| 40 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝜑 ∧ 𝑤 ∈ ℝ) |
| 41 | | nfra1 3284 |
. . . . . . . . . 10
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤 |
| 42 | 40, 41 | nfan 1899 |
. . . . . . . . 9
⊢
Ⅎ𝑥((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) |
| 43 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑧 ∈ 𝐶 |
| 44 | 42, 43 | nfan 1899 |
. . . . . . . 8
⊢
Ⅎ𝑥(((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑧 ∈ 𝐶) |
| 45 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝐵 ≤ 𝑤 |
| 46 | 9 | 3impa 1110 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → 𝐵 ∈ ℝ) |
| 47 | 46 | 3adant1r 1178 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → 𝐵 ∈ ℝ) |
| 48 | 47 | 3adant1r 1178 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → 𝐵 ∈ ℝ) |
| 49 | | n0i 4340 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝑥 → ¬ 𝑥 = ∅) |
| 50 | 49 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → ¬ 𝑥 = ∅) |
| 51 | 50 | iffalsed 4536 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) = sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) |
| 52 | 51 | eqcomd 2743 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < ) = if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < ))) |
| 53 | 52 | 3adant1 1131 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < ) = if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < ))) |
| 54 | 13 | 3adant3 1133 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ∈
ℝ) |
| 55 | 53, 54 | eqeltrd 2841 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < ) ∈
ℝ) |
| 56 | 55 | 3adant1r 1178 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < ) ∈
ℝ) |
| 57 | 56 | 3adant1r 1178 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < ) ∈
ℝ) |
| 58 | | simp1lr 1238 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → 𝑤 ∈ ℝ) |
| 59 | | nfv 1914 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑢(𝜑 ∧ 𝑥 ∈ 𝐴) |
| 60 | | nfab1 2907 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑢{𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵} |
| 61 | | nfcv 2905 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑢ℝ |
| 62 | | abid 2718 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵} ↔ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵) |
| 63 | 62 | biimpi 216 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵} → ∃𝑧 ∈ 𝑥 𝑢 = 𝐵) |
| 64 | 63 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}) → ∃𝑧 ∈ 𝑥 𝑢 = 𝐵) |
| 65 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑧(𝜑 ∧ 𝑥 ∈ 𝐴) |
| 66 | 21 | nfsab 2727 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑧 𝑢 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵} |
| 67 | 65, 66 | nfan 1899 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑧((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}) |
| 68 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑧 𝑢 ∈ ℝ |
| 69 | | simp3 1139 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ 𝑥 ∧ 𝑢 = 𝐵) → 𝑢 = 𝐵) |
| 70 | 9 | 3adant3 1133 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ 𝑥 ∧ 𝑢 = 𝐵) → 𝐵 ∈ ℝ) |
| 71 | 69, 70 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 ∈ 𝑥 ∧ 𝑢 = 𝐵) → 𝑢 ∈ ℝ) |
| 72 | 71 | 3exp 1120 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑧 ∈ 𝑥 → (𝑢 = 𝐵 → 𝑢 ∈ ℝ))) |
| 73 | 72 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}) → (𝑧 ∈ 𝑥 → (𝑢 = 𝐵 → 𝑢 ∈ ℝ))) |
| 74 | 67, 68, 73 | rexlimd 3266 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}) → (∃𝑧 ∈ 𝑥 𝑢 = 𝐵 → 𝑢 ∈ ℝ)) |
| 75 | 64, 74 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑢 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}) → 𝑢 ∈ ℝ) |
| 76 | 75 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑢 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵} → 𝑢 ∈ ℝ)) |
| 77 | 59, 60, 61, 76 | ssrd 3988 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵} ⊆ ℝ) |
| 78 | 77 | 3adant3 1133 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵} ⊆ ℝ) |
| 79 | | simp3 1139 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → 𝑧 ∈ 𝑥) |
| 80 | | elabrexg 7263 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ 𝑥 ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}) |
| 81 | 79, 46, 80 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → 𝐵 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}) |
| 82 | 81 | ne0d 4342 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵} ≠ ∅) |
| 83 | | abid 2718 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ∈ {𝑣 ∣ ∃𝑧 ∈ 𝑥 𝑣 = 𝐵} ↔ ∃𝑧 ∈ 𝑥 𝑣 = 𝐵) |
| 84 | 83 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑣 ∈ {𝑣 ∣ ∃𝑧 ∈ 𝑥 𝑣 = 𝐵} → ∃𝑧 ∈ 𝑥 𝑣 = 𝐵) |
| 85 | | eqeq1 2741 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑢 = 𝑣 → (𝑢 = 𝐵 ↔ 𝑣 = 𝐵)) |
| 86 | 85 | rexbidv 3179 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 = 𝑣 → (∃𝑧 ∈ 𝑥 𝑢 = 𝐵 ↔ ∃𝑧 ∈ 𝑥 𝑣 = 𝐵)) |
| 87 | 86 | cbvabv 2812 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵} = {𝑣 ∣ ∃𝑧 ∈ 𝑥 𝑣 = 𝐵} |
| 88 | 84, 87 | eleq2s 2859 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑣 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵} → ∃𝑧 ∈ 𝑥 𝑣 = 𝐵) |
| 89 | 88 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑧 ∈ 𝑥 𝐵 ≤ 𝑦) ∧ 𝑣 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}) → ∃𝑧 ∈ 𝑥 𝑣 = 𝐵) |
| 90 | | nfra1 3284 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑧∀𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 |
| 91 | 65, 90 | nfan 1899 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑧((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑧 ∈ 𝑥 𝐵 ≤ 𝑦) |
| 92 | 21 | nfsab 2727 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑧 𝑣 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵} |
| 93 | 91, 92 | nfan 1899 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑧(((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑧 ∈ 𝑥 𝐵 ≤ 𝑦) ∧ 𝑣 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}) |
| 94 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑧 𝑣 ≤ 𝑦 |
| 95 | | simp3 1139 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((∀𝑧 ∈
𝑥 𝐵 ≤ 𝑦 ∧ 𝑧 ∈ 𝑥 ∧ 𝑣 = 𝐵) → 𝑣 = 𝐵) |
| 96 | | rspa 3248 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((∀𝑧 ∈
𝑥 𝐵 ≤ 𝑦 ∧ 𝑧 ∈ 𝑥) → 𝐵 ≤ 𝑦) |
| 97 | 96 | 3adant3 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((∀𝑧 ∈
𝑥 𝐵 ≤ 𝑦 ∧ 𝑧 ∈ 𝑥 ∧ 𝑣 = 𝐵) → 𝐵 ≤ 𝑦) |
| 98 | 95, 97 | eqbrtrd 5165 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((∀𝑧 ∈
𝑥 𝐵 ≤ 𝑦 ∧ 𝑧 ∈ 𝑥 ∧ 𝑣 = 𝐵) → 𝑣 ≤ 𝑦) |
| 99 | 98 | 3exp 1120 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(∀𝑧 ∈
𝑥 𝐵 ≤ 𝑦 → (𝑧 ∈ 𝑥 → (𝑣 = 𝐵 → 𝑣 ≤ 𝑦))) |
| 100 | 99 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑧 ∈ 𝑥 𝐵 ≤ 𝑦) → (𝑧 ∈ 𝑥 → (𝑣 = 𝐵 → 𝑣 ≤ 𝑦))) |
| 101 | 100 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑧 ∈ 𝑥 𝐵 ≤ 𝑦) ∧ 𝑣 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}) → (𝑧 ∈ 𝑥 → (𝑣 = 𝐵 → 𝑣 ≤ 𝑦))) |
| 102 | 93, 94, 101 | rexlimd 3266 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑧 ∈ 𝑥 𝐵 ≤ 𝑦) ∧ 𝑣 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}) → (∃𝑧 ∈ 𝑥 𝑣 = 𝐵 → 𝑣 ≤ 𝑦)) |
| 103 | 89, 102 | mpd 15 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑧 ∈ 𝑥 𝐵 ≤ 𝑦) ∧ 𝑣 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}) → 𝑣 ≤ 𝑦) |
| 104 | 103 | ralrimiva 3146 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑧 ∈ 𝑥 𝐵 ≤ 𝑦) → ∀𝑣 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}𝑣 ≤ 𝑦) |
| 105 | 104 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 → ∀𝑣 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}𝑣 ≤ 𝑦)) |
| 106 | 105 | reximdv 3170 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝑥 𝐵 ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑣 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}𝑣 ≤ 𝑦)) |
| 107 | 10, 106 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑣 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}𝑣 ≤ 𝑦) |
| 108 | 107 | 3adant3 1133 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑣 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}𝑣 ≤ 𝑦) |
| 109 | | suprub 12229 |
. . . . . . . . . . . . . 14
⊢ ((({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵} ⊆ ℝ ∧ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑣 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}𝑣 ≤ 𝑦) ∧ 𝐵 ∈ {𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}) → 𝐵 ≤ sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) |
| 110 | 78, 82, 108, 81, 109 | syl31anc 1375 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → 𝐵 ≤ sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) |
| 111 | 110 | 3adant1r 1178 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → 𝐵 ≤ sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) |
| 112 | 111 | 3adant1r 1178 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → 𝐵 ≤ sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) |
| 113 | 52 | 3adant1 1131 |
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < ) = if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < ))) |
| 114 | | rspa 3248 |
. . . . . . . . . . . . . 14
⊢
((∀𝑥 ∈
𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤 ∧ 𝑥 ∈ 𝐴) → if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) |
| 115 | 114 | 3adant3 1133 |
. . . . . . . . . . . . 13
⊢
((∀𝑥 ∈
𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) |
| 116 | 113, 115 | eqbrtrd 5165 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < ) ≤ 𝑤) |
| 117 | 116 | 3adant1l 1177 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < ) ≤ 𝑤) |
| 118 | 48, 57, 58, 112, 117 | letrd 11418 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝑥) → 𝐵 ≤ 𝑤) |
| 119 | 118 | 3exp 1120 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) → (𝑥 ∈ 𝐴 → (𝑧 ∈ 𝑥 → 𝐵 ≤ 𝑤))) |
| 120 | 119 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑧 ∈ 𝐶) → (𝑥 ∈ 𝐴 → (𝑧 ∈ 𝑥 → 𝐵 ≤ 𝑤))) |
| 121 | 44, 45, 120 | rexlimd 3266 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑧 ∈ 𝐶) → (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝑥 → 𝐵 ≤ 𝑤)) |
| 122 | 39, 121 | mpd 15 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑧 ∈ 𝐶) → 𝐵 ≤ 𝑤) |
| 123 | 122 | ex 412 |
. . . . 5
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) → (𝑧 ∈ 𝐶 → 𝐵 ≤ 𝑤)) |
| 124 | 31, 123 | ralrimi 3257 |
. . . 4
⊢ (((𝜑 ∧ 𝑤 ∈ ℝ) ∧ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) → ∀𝑧 ∈ 𝐶 𝐵 ≤ 𝑤) |
| 125 | 124 | ex 412 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ ℝ) → (∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤 → ∀𝑧 ∈ 𝐶 𝐵 ≤ 𝑤)) |
| 126 | 125 | reximdva 3168 |
. 2
⊢ (𝜑 → (∃𝑤 ∈ ℝ ∀𝑥 ∈ 𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧 ∈ 𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤 → ∃𝑤 ∈ ℝ ∀𝑧 ∈ 𝐶 𝐵 ≤ 𝑤)) |
| 127 | 16, 126 | mpd 15 |
1
⊢ (𝜑 → ∃𝑤 ∈ ℝ ∀𝑧 ∈ 𝐶 𝐵 ≤ 𝑤) |