Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssfiunibd Structured version   Visualization version   GIF version

Theorem ssfiunibd 41596
Description: A finite union of bounded sets is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
ssfiunibd.fi (𝜑𝐴 ∈ Fin)
ssfiunibd.b ((𝜑𝑧 𝐴) → 𝐵 ∈ ℝ)
ssfiunibd.bd ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧𝑥 𝐵𝑦)
ssfiunibd.ssun (𝜑𝐶 𝐴)
Assertion
Ref Expression
ssfiunibd (𝜑 → ∃𝑤 ∈ ℝ ∀𝑧𝐶 𝐵𝑤)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑤,𝐴,𝑥,𝑧   𝑥,𝐵,𝑦   𝑤,𝐵   𝑥,𝐶   𝜑,𝑥,𝑦,𝑧   𝜑,𝑤
Allowed substitution hints:   𝐵(𝑧)   𝐶(𝑦,𝑧,𝑤)

Proof of Theorem ssfiunibd
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssfiunibd.fi . . 3 (𝜑𝐴 ∈ Fin)
2 simpll 765 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑧𝑥) → 𝜑)
3 19.8a 2180 . . . . . . . . . 10 ((𝑧𝑥𝑥𝐴) → ∃𝑥(𝑧𝑥𝑥𝐴))
43ancoms 461 . . . . . . . . 9 ((𝑥𝐴𝑧𝑥) → ∃𝑥(𝑧𝑥𝑥𝐴))
5 eluni 4841 . . . . . . . . 9 (𝑧 𝐴 ↔ ∃𝑥(𝑧𝑥𝑥𝐴))
64, 5sylibr 236 . . . . . . . 8 ((𝑥𝐴𝑧𝑥) → 𝑧 𝐴)
76adantll 712 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑧𝑥) → 𝑧 𝐴)
8 ssfiunibd.b . . . . . . 7 ((𝜑𝑧 𝐴) → 𝐵 ∈ ℝ)
92, 7, 8syl2anc 586 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑧𝑥) → 𝐵 ∈ ℝ)
10 ssfiunibd.bd . . . . . 6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧𝑥 𝐵𝑦)
11 eqid 2821 . . . . . 6 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) = if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < ))
129, 10, 11upbdrech2 41595 . . . . 5 ((𝜑𝑥𝐴) → (if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ∈ ℝ ∧ ∀𝑧𝑥 𝐵 ≤ if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < ))))
1312simpld 497 . . . 4 ((𝜑𝑥𝐴) → if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ∈ ℝ)
1413ralrimiva 3182 . . 3 (𝜑 → ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ∈ ℝ)
15 fimaxre3 11587 . . 3 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ∈ ℝ) → ∃𝑤 ∈ ℝ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤)
161, 14, 15syl2anc 586 . 2 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤)
17 nfv 1915 . . . . . 6 𝑧(𝜑𝑤 ∈ ℝ)
18 nfcv 2977 . . . . . . 7 𝑧𝐴
19 nfv 1915 . . . . . . . . 9 𝑧 𝑥 = ∅
20 nfcv 2977 . . . . . . . . 9 𝑧0
21 nfre1 3306 . . . . . . . . . . 11 𝑧𝑧𝑥 𝑢 = 𝐵
2221nfab 2984 . . . . . . . . . 10 𝑧{𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}
23 nfcv 2977 . . . . . . . . . 10 𝑧
24 nfcv 2977 . . . . . . . . . 10 𝑧 <
2522, 23, 24nfsup 8915 . . . . . . . . 9 𝑧sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )
2619, 20, 25nfif 4496 . . . . . . . 8 𝑧if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < ))
27 nfcv 2977 . . . . . . . 8 𝑧
28 nfcv 2977 . . . . . . . 8 𝑧𝑤
2926, 27, 28nfbr 5113 . . . . . . 7 𝑧if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤
3018, 29nfralw 3225 . . . . . 6 𝑧𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤
3117, 30nfan 1900 . . . . 5 𝑧((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤)
32 ssfiunibd.ssun . . . . . . . . . . . 12 (𝜑𝐶 𝐴)
3332sselda 3967 . . . . . . . . . . 11 ((𝜑𝑧𝐶) → 𝑧 𝐴)
3433, 5sylib 220 . . . . . . . . . 10 ((𝜑𝑧𝐶) → ∃𝑥(𝑧𝑥𝑥𝐴))
35 exancom 1861 . . . . . . . . . 10 (∃𝑥(𝑧𝑥𝑥𝐴) ↔ ∃𝑥(𝑥𝐴𝑧𝑥))
3634, 35sylib 220 . . . . . . . . 9 ((𝜑𝑧𝐶) → ∃𝑥(𝑥𝐴𝑧𝑥))
37 df-rex 3144 . . . . . . . . 9 (∃𝑥𝐴 𝑧𝑥 ↔ ∃𝑥(𝑥𝐴𝑧𝑥))
3836, 37sylibr 236 . . . . . . . 8 ((𝜑𝑧𝐶) → ∃𝑥𝐴 𝑧𝑥)
3938ad4ant14 750 . . . . . . 7 ((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑧𝐶) → ∃𝑥𝐴 𝑧𝑥)
40 nfv 1915 . . . . . . . . . 10 𝑥(𝜑𝑤 ∈ ℝ)
41 nfra1 3219 . . . . . . . . . 10 𝑥𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤
4240, 41nfan 1900 . . . . . . . . 9 𝑥((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤)
43 nfv 1915 . . . . . . . . 9 𝑥 𝑧𝐶
4442, 43nfan 1900 . . . . . . . 8 𝑥(((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑧𝐶)
45 nfv 1915 . . . . . . . 8 𝑥 𝐵𝑤
4693impa 1106 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑧𝑥) → 𝐵 ∈ ℝ)
47463adant1r 1173 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴𝑧𝑥) → 𝐵 ∈ ℝ)
48473adant1r 1173 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑥𝐴𝑧𝑥) → 𝐵 ∈ ℝ)
49 n0i 4299 . . . . . . . . . . . . . . . . . 18 (𝑧𝑥 → ¬ 𝑥 = ∅)
5049adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴𝑧𝑥) → ¬ 𝑥 = ∅)
5150iffalsed 4478 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝑧𝑥) → if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) = sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < ))
5251eqcomd 2827 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑧𝑥) → sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < ) = if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )))
53523adant1 1126 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑧𝑥) → sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < ) = if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )))
54133adant3 1128 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑧𝑥) → if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ∈ ℝ)
5553, 54eqeltrd 2913 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑧𝑥) → sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < ) ∈ ℝ)
56553adant1r 1173 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴𝑧𝑥) → sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < ) ∈ ℝ)
57563adant1r 1173 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑥𝐴𝑧𝑥) → sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < ) ∈ ℝ)
58 simp1lr 1233 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑥𝐴𝑧𝑥) → 𝑤 ∈ ℝ)
59 nfv 1915 . . . . . . . . . . . . . . . 16 𝑢(𝜑𝑥𝐴)
60 nfab1 2979 . . . . . . . . . . . . . . . 16 𝑢{𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}
61 nfcv 2977 . . . . . . . . . . . . . . . 16 𝑢
62 abid 2803 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵} ↔ ∃𝑧𝑥 𝑢 = 𝐵)
6362biimpi 218 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵} → ∃𝑧𝑥 𝑢 = 𝐵)
6463adantl 484 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ 𝑢 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}) → ∃𝑧𝑥 𝑢 = 𝐵)
65 nfv 1915 . . . . . . . . . . . . . . . . . . . 20 𝑧(𝜑𝑥𝐴)
6621nfsab 2812 . . . . . . . . . . . . . . . . . . . 20 𝑧 𝑢 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}
6765, 66nfan 1900 . . . . . . . . . . . . . . . . . . 19 𝑧((𝜑𝑥𝐴) ∧ 𝑢 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵})
68 nfv 1915 . . . . . . . . . . . . . . . . . . 19 𝑧 𝑢 ∈ ℝ
69 simp3 1134 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝐴) ∧ 𝑧𝑥𝑢 = 𝐵) → 𝑢 = 𝐵)
7093adant3 1128 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝐴) ∧ 𝑧𝑥𝑢 = 𝐵) → 𝐵 ∈ ℝ)
7169, 70eqeltrd 2913 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥𝐴) ∧ 𝑧𝑥𝑢 = 𝐵) → 𝑢 ∈ ℝ)
72713exp 1115 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐴) → (𝑧𝑥 → (𝑢 = 𝐵𝑢 ∈ ℝ)))
7372adantr 483 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐴) ∧ 𝑢 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}) → (𝑧𝑥 → (𝑢 = 𝐵𝑢 ∈ ℝ)))
7467, 68, 73rexlimd 3317 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ 𝑢 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}) → (∃𝑧𝑥 𝑢 = 𝐵𝑢 ∈ ℝ))
7564, 74mpd 15 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑢 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}) → 𝑢 ∈ ℝ)
7675ex 415 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝑢 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵} → 𝑢 ∈ ℝ))
7759, 60, 61, 76ssrd 3972 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵} ⊆ ℝ)
78773adant3 1128 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑧𝑥) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵} ⊆ ℝ)
79 simp3 1134 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑧𝑥) → 𝑧𝑥)
80 elabrexg 41323 . . . . . . . . . . . . . . . 16 ((𝑧𝑥𝐵 ∈ ℝ) → 𝐵 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵})
8179, 46, 80syl2anc 586 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑧𝑥) → 𝐵 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵})
8281ne0d 4301 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑧𝑥) → {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵} ≠ ∅)
83 abid 2803 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∈ {𝑣 ∣ ∃𝑧𝑥 𝑣 = 𝐵} ↔ ∃𝑧𝑥 𝑣 = 𝐵)
8483biimpi 218 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ {𝑣 ∣ ∃𝑧𝑥 𝑣 = 𝐵} → ∃𝑧𝑥 𝑣 = 𝐵)
85 eqeq1 2825 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑣 → (𝑢 = 𝐵𝑣 = 𝐵))
8685rexbidv 3297 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑣 → (∃𝑧𝑥 𝑢 = 𝐵 ↔ ∃𝑧𝑥 𝑣 = 𝐵))
8786cbvabv 2889 . . . . . . . . . . . . . . . . . . . . . 22 {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵} = {𝑣 ∣ ∃𝑧𝑥 𝑣 = 𝐵}
8884, 87eleq2s 2931 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵} → ∃𝑧𝑥 𝑣 = 𝐵)
8988adantl 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ ∀𝑧𝑥 𝐵𝑦) ∧ 𝑣 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}) → ∃𝑧𝑥 𝑣 = 𝐵)
90 nfra1 3219 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧𝑧𝑥 𝐵𝑦
9165, 90nfan 1900 . . . . . . . . . . . . . . . . . . . . . 22 𝑧((𝜑𝑥𝐴) ∧ ∀𝑧𝑥 𝐵𝑦)
9221nfsab 2812 . . . . . . . . . . . . . . . . . . . . . 22 𝑧 𝑣 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}
9391, 92nfan 1900 . . . . . . . . . . . . . . . . . . . . 21 𝑧(((𝜑𝑥𝐴) ∧ ∀𝑧𝑥 𝐵𝑦) ∧ 𝑣 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵})
94 nfv 1915 . . . . . . . . . . . . . . . . . . . . 21 𝑧 𝑣𝑦
95 simp3 1134 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∀𝑧𝑥 𝐵𝑦𝑧𝑥𝑣 = 𝐵) → 𝑣 = 𝐵)
96 rspa 3206 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((∀𝑧𝑥 𝐵𝑦𝑧𝑥) → 𝐵𝑦)
97963adant3 1128 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((∀𝑧𝑥 𝐵𝑦𝑧𝑥𝑣 = 𝐵) → 𝐵𝑦)
9895, 97eqbrtrd 5088 . . . . . . . . . . . . . . . . . . . . . . . 24 ((∀𝑧𝑥 𝐵𝑦𝑧𝑥𝑣 = 𝐵) → 𝑣𝑦)
99983exp 1115 . . . . . . . . . . . . . . . . . . . . . . 23 (∀𝑧𝑥 𝐵𝑦 → (𝑧𝑥 → (𝑣 = 𝐵𝑣𝑦)))
10099adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥𝐴) ∧ ∀𝑧𝑥 𝐵𝑦) → (𝑧𝑥 → (𝑣 = 𝐵𝑣𝑦)))
101100adantr 483 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥𝐴) ∧ ∀𝑧𝑥 𝐵𝑦) ∧ 𝑣 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}) → (𝑧𝑥 → (𝑣 = 𝐵𝑣𝑦)))
10293, 94, 101rexlimd 3317 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥𝐴) ∧ ∀𝑧𝑥 𝐵𝑦) ∧ 𝑣 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}) → (∃𝑧𝑥 𝑣 = 𝐵𝑣𝑦))
10389, 102mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥𝐴) ∧ ∀𝑧𝑥 𝐵𝑦) ∧ 𝑣 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}) → 𝑣𝑦)
104103ralrimiva 3182 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐴) ∧ ∀𝑧𝑥 𝐵𝑦) → ∀𝑣 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}𝑣𝑦)
105104ex 415 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (∀𝑧𝑥 𝐵𝑦 → ∀𝑣 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}𝑣𝑦))
106105reximdv 3273 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (∃𝑦 ∈ ℝ ∀𝑧𝑥 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑣 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}𝑣𝑦))
10710, 106mpd 15 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑣 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}𝑣𝑦)
1081073adant3 1128 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑧𝑥) → ∃𝑦 ∈ ℝ ∀𝑣 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}𝑣𝑦)
109 suprub 11602 . . . . . . . . . . . . . 14 ((({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵} ⊆ ℝ ∧ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵} ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑣 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}𝑣𝑦) ∧ 𝐵 ∈ {𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}) → 𝐵 ≤ sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < ))
11078, 82, 108, 81, 109syl31anc 1369 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑧𝑥) → 𝐵 ≤ sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < ))
1111103adant1r 1173 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ ℝ) ∧ 𝑥𝐴𝑧𝑥) → 𝐵 ≤ sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < ))
1121113adant1r 1173 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑥𝐴𝑧𝑥) → 𝐵 ≤ sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < ))
113523adant1 1126 . . . . . . . . . . . . 13 ((∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤𝑥𝐴𝑧𝑥) → sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < ) = if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )))
114 rspa 3206 . . . . . . . . . . . . . 14 ((∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤𝑥𝐴) → if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤)
1151143adant3 1128 . . . . . . . . . . . . 13 ((∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤𝑥𝐴𝑧𝑥) → if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤)
116113, 115eqbrtrd 5088 . . . . . . . . . . . 12 ((∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤𝑥𝐴𝑧𝑥) → sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < ) ≤ 𝑤)
1171163adant1l 1172 . . . . . . . . . . 11 ((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑥𝐴𝑧𝑥) → sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < ) ≤ 𝑤)
11848, 57, 58, 112, 117letrd 10797 . . . . . . . . . 10 ((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑥𝐴𝑧𝑥) → 𝐵𝑤)
1191183exp 1115 . . . . . . . . 9 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) → (𝑥𝐴 → (𝑧𝑥𝐵𝑤)))
120119adantr 483 . . . . . . . 8 ((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑧𝐶) → (𝑥𝐴 → (𝑧𝑥𝐵𝑤)))
12144, 45, 120rexlimd 3317 . . . . . . 7 ((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑧𝐶) → (∃𝑥𝐴 𝑧𝑥𝐵𝑤))
12239, 121mpd 15 . . . . . 6 ((((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) ∧ 𝑧𝐶) → 𝐵𝑤)
123122ex 415 . . . . 5 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) → (𝑧𝐶𝐵𝑤))
12431, 123ralrimi 3216 . . . 4 (((𝜑𝑤 ∈ ℝ) ∧ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤) → ∀𝑧𝐶 𝐵𝑤)
125124ex 415 . . 3 ((𝜑𝑤 ∈ ℝ) → (∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤 → ∀𝑧𝐶 𝐵𝑤))
126125reximdva 3274 . 2 (𝜑 → (∃𝑤 ∈ ℝ ∀𝑥𝐴 if(𝑥 = ∅, 0, sup({𝑢 ∣ ∃𝑧𝑥 𝑢 = 𝐵}, ℝ, < )) ≤ 𝑤 → ∃𝑤 ∈ ℝ ∀𝑧𝐶 𝐵𝑤))
12716, 126mpd 15 1 (𝜑 → ∃𝑤 ∈ ℝ ∀𝑧𝐶 𝐵𝑤)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wne 3016  wral 3138  wrex 3139  wss 3936  c0 4291  ifcif 4467   cuni 4838   class class class wbr 5066  Fincfn 8509  supcsup 8904  cr 10536  0cc0 10537   < clt 10675  cle 10676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873
This theorem is referenced by:  fourierdlem70  42481  fourierdlem71  42482  fourierdlem80  42491
  Copyright terms: Public domain W3C validator