Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfsbc1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for class substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfsbc1.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfsbc1 | ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfsbc1.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | 2 | nfsbc1d 3737 | . 2 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑥]𝜑) |
4 | 3 | mptru 1548 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1542 Ⅎwnf 1789 Ⅎwnfc 2888 [wsbc 3719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-sbc 3720 |
This theorem is referenced by: nfsbc1v 3739 riotass2 7256 riotass 7257 uzwo4 42554 |
Copyright terms: Public domain | W3C validator |