MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsbc1 Structured version   Visualization version   GIF version

Theorem nfsbc1 3810
Description: Bound-variable hypothesis builder for class substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypothesis
Ref Expression
nfsbc1.1 𝑥𝐴
Assertion
Ref Expression
nfsbc1 𝑥[𝐴 / 𝑥]𝜑

Proof of Theorem nfsbc1
StepHypRef Expression
1 nfsbc1.1 . . . 4 𝑥𝐴
21a1i 11 . . 3 (⊤ → 𝑥𝐴)
32nfsbc1d 3809 . 2 (⊤ → Ⅎ𝑥[𝐴 / 𝑥]𝜑)
43mptru 1544 1 𝑥[𝐴 / 𝑥]𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1538  wnf 1780  wnfc 2888  [wsbc 3791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-sbc 3792
This theorem is referenced by:  nfsbc1v  3811  riotass2  7418  riotass  7419  uzwo4  44993
  Copyright terms: Public domain W3C validator