MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsbc1 Structured version   Visualization version   GIF version

Theorem nfsbc1 3795
Description: Bound-variable hypothesis builder for class substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypothesis
Ref Expression
nfsbc1.1 𝑥𝐴
Assertion
Ref Expression
nfsbc1 𝑥[𝐴 / 𝑥]𝜑

Proof of Theorem nfsbc1
StepHypRef Expression
1 nfsbc1.1 . . . 4 𝑥𝐴
21a1i 11 . . 3 (⊤ → 𝑥𝐴)
32nfsbc1d 3794 . 2 (⊤ → Ⅎ𝑥[𝐴 / 𝑥]𝜑)
43mptru 1546 1 𝑥[𝐴 / 𝑥]𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1540  wnf 1783  wnfc 2881  [wsbc 3776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-sbc 3777
This theorem is referenced by:  nfsbc1v  3796  riotass2  7398  riotass  7399  uzwo4  44041
  Copyright terms: Public domain W3C validator