MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsbc1 Structured version   Visualization version   GIF version

Theorem nfsbc1 3735
Description: Bound-variable hypothesis builder for class substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypothesis
Ref Expression
nfsbc1.1 𝑥𝐴
Assertion
Ref Expression
nfsbc1 𝑥[𝐴 / 𝑥]𝜑

Proof of Theorem nfsbc1
StepHypRef Expression
1 nfsbc1.1 . . . 4 𝑥𝐴
21a1i 11 . . 3 (⊤ → 𝑥𝐴)
32nfsbc1d 3734 . 2 (⊤ → Ⅎ𝑥[𝐴 / 𝑥]𝜑)
43mptru 1546 1 𝑥[𝐴 / 𝑥]𝜑
Colors of variables: wff setvar class
Syntax hints:  wtru 1540  wnf 1786  wnfc 2887  [wsbc 3716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-sbc 3717
This theorem is referenced by:  nfsbc1v  3736  riotass2  7263  riotass  7264  uzwo4  42601
  Copyright terms: Public domain W3C validator