![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotass | Structured version Visualization version GIF version |
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
riotass | ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuss 4333 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) | |
2 | riotasbc 7406 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) |
4 | simp1 1135 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → 𝐴 ⊆ 𝐵) | |
5 | riotacl 7405 | . . . . . 6 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | |
6 | 1, 5 | syl 17 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
7 | 4, 6 | sseldd 3996 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐵) |
8 | simp3 1137 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐵 𝜑) | |
9 | nfriota1 7395 | . . . . 5 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) | |
10 | 9 | nfsbc1 3810 | . . . . 5 ⊢ Ⅎ𝑥[(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑 |
11 | sbceq1a 3802 | . . . . 5 ⊢ (𝑥 = (℩𝑥 ∈ 𝐴 𝜑) → (𝜑 ↔ [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑)) | |
12 | 9, 10, 11 | riota2f 7412 | . . . 4 ⊢ (((℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ([(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑 ↔ (℩𝑥 ∈ 𝐵 𝜑) = (℩𝑥 ∈ 𝐴 𝜑))) |
13 | 7, 8, 12 | syl2anc 584 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ([(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑 ↔ (℩𝑥 ∈ 𝐵 𝜑) = (℩𝑥 ∈ 𝐴 𝜑))) |
14 | 3, 13 | mpbid 232 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐵 𝜑) = (℩𝑥 ∈ 𝐴 𝜑)) |
15 | 14 | eqcomd 2741 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 ∃!wreu 3376 [wsbc 3791 ⊆ wss 3963 ℩crio 7387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-un 3968 df-ss 3980 df-sn 4632 df-pr 4634 df-uni 4913 df-iota 6516 df-riota 7388 |
This theorem is referenced by: moriotass 7420 resubeqsub 42436 |
Copyright terms: Public domain | W3C validator |