MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotass Structured version   Visualization version   GIF version

Theorem riotass 7264
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotass ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotass
StepHypRef Expression
1 reuss 4250 . . . 4 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ∃!𝑥𝐴 𝜑)
2 riotasbc 7251 . . . 4 (∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)
31, 2syl 17 . . 3 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → [(𝑥𝐴 𝜑) / 𝑥]𝜑)
4 simp1 1135 . . . . 5 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → 𝐴𝐵)
5 riotacl 7250 . . . . . 6 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
61, 5syl 17 . . . . 5 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) ∈ 𝐴)
74, 6sseldd 3922 . . . 4 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) ∈ 𝐵)
8 simp3 1137 . . . 4 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ∃!𝑥𝐵 𝜑)
9 nfriota1 7239 . . . . 5 𝑥(𝑥𝐴 𝜑)
109nfsbc1 3735 . . . . 5 𝑥[(𝑥𝐴 𝜑) / 𝑥]𝜑
11 sbceq1a 3727 . . . . 5 (𝑥 = (𝑥𝐴 𝜑) → (𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑))
129, 10, 11riota2f 7257 . . . 4 (((𝑥𝐴 𝜑) ∈ 𝐵 ∧ ∃!𝑥𝐵 𝜑) → ([(𝑥𝐴 𝜑) / 𝑥]𝜑 ↔ (𝑥𝐵 𝜑) = (𝑥𝐴 𝜑)))
137, 8, 12syl2anc 584 . . 3 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ([(𝑥𝐴 𝜑) / 𝑥]𝜑 ↔ (𝑥𝐵 𝜑) = (𝑥𝐴 𝜑)))
143, 13mpbid 231 . 2 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐵 𝜑) = (𝑥𝐴 𝜑))
1514eqcomd 2744 1 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  ∃!wreu 3066  [wsbc 3716  wss 3887  crio 7231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-un 3892  df-in 3894  df-ss 3904  df-sn 4562  df-pr 4564  df-uni 4840  df-iota 6391  df-riota 7232
This theorem is referenced by:  moriotass  7265  resubeqsub  40411
  Copyright terms: Public domain W3C validator