Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riotass | Structured version Visualization version GIF version |
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
riotass | ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuss 4248 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) | |
2 | riotasbc 7211 | . . . 4 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) |
4 | simp1 1138 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → 𝐴 ⊆ 𝐵) | |
5 | riotacl 7210 | . . . . . 6 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | |
6 | 1, 5 | syl 17 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
7 | 4, 6 | sseldd 3919 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐵) |
8 | simp3 1140 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐵 𝜑) | |
9 | nfriota1 7199 | . . . . 5 ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) | |
10 | 9 | nfsbc1 3730 | . . . . 5 ⊢ Ⅎ𝑥[(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑 |
11 | sbceq1a 3722 | . . . . 5 ⊢ (𝑥 = (℩𝑥 ∈ 𝐴 𝜑) → (𝜑 ↔ [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑)) | |
12 | 9, 10, 11 | riota2f 7217 | . . . 4 ⊢ (((℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ([(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑 ↔ (℩𝑥 ∈ 𝐵 𝜑) = (℩𝑥 ∈ 𝐴 𝜑))) |
13 | 7, 8, 12 | syl2anc 587 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ([(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑 ↔ (℩𝑥 ∈ 𝐵 𝜑) = (℩𝑥 ∈ 𝐴 𝜑))) |
14 | 3, 13 | mpbid 235 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐵 𝜑) = (℩𝑥 ∈ 𝐴 𝜑)) |
15 | 14 | eqcomd 2745 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1089 = wceq 1543 ∈ wcel 2112 ∃wrex 3065 ∃!wreu 3066 [wsbc 3711 ⊆ wss 3883 ℩crio 7191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6359 df-riota 7192 |
This theorem is referenced by: moriotass 7225 resubeqsub 40167 |
Copyright terms: Public domain | W3C validator |