MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotass Structured version   Visualization version   GIF version

Theorem riotass 7400
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
riotass ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem riotass
StepHypRef Expression
1 reuss 4316 . . . 4 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ∃!𝑥𝐴 𝜑)
2 riotasbc 7387 . . . 4 (∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)
31, 2syl 17 . . 3 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → [(𝑥𝐴 𝜑) / 𝑥]𝜑)
4 simp1 1135 . . . . 5 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → 𝐴𝐵)
5 riotacl 7386 . . . . . 6 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
61, 5syl 17 . . . . 5 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) ∈ 𝐴)
74, 6sseldd 3983 . . . 4 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) ∈ 𝐵)
8 simp3 1137 . . . 4 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ∃!𝑥𝐵 𝜑)
9 nfriota1 7375 . . . . 5 𝑥(𝑥𝐴 𝜑)
109nfsbc1 3796 . . . . 5 𝑥[(𝑥𝐴 𝜑) / 𝑥]𝜑
11 sbceq1a 3788 . . . . 5 (𝑥 = (𝑥𝐴 𝜑) → (𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑))
129, 10, 11riota2f 7393 . . . 4 (((𝑥𝐴 𝜑) ∈ 𝐵 ∧ ∃!𝑥𝐵 𝜑) → ([(𝑥𝐴 𝜑) / 𝑥]𝜑 ↔ (𝑥𝐵 𝜑) = (𝑥𝐴 𝜑)))
137, 8, 12syl2anc 583 . . 3 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ([(𝑥𝐴 𝜑) / 𝑥]𝜑 ↔ (𝑥𝐵 𝜑) = (𝑥𝐴 𝜑)))
143, 13mpbid 231 . 2 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐵 𝜑) = (𝑥𝐴 𝜑))
1514eqcomd 2737 1 ((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1540  wcel 2105  wrex 3069  ∃!wreu 3373  [wsbc 3777  wss 3948  crio 7367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-un 3953  df-in 3955  df-ss 3965  df-sn 4629  df-pr 4631  df-uni 4909  df-iota 6495  df-riota 7368
This theorem is referenced by:  moriotass  7401  resubeqsub  41768
  Copyright terms: Public domain W3C validator