MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotass2 Structured version   Visualization version   GIF version

Theorem riotass2 7263
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.)
Assertion
Ref Expression
riotass2 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem riotass2
StepHypRef Expression
1 reuss2 4249 . . . 4 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → ∃!𝑥𝐴 𝜑)
2 simplr 766 . . . 4 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → ∀𝑥𝐴 (𝜑𝜓))
3 riotasbc 7251 . . . . 5 (∃!𝑥𝐴 𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜑)
4 riotacl 7250 . . . . . 6 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) ∈ 𝐴)
5 rspsbc 3812 . . . . . . 7 ((𝑥𝐴 𝜑) ∈ 𝐴 → (∀𝑥𝐴 (𝜑𝜓) → [(𝑥𝐴 𝜑) / 𝑥](𝜑𝜓)))
6 sbcimg 3767 . . . . . . 7 ((𝑥𝐴 𝜑) ∈ 𝐴 → ([(𝑥𝐴 𝜑) / 𝑥](𝜑𝜓) ↔ ([(𝑥𝐴 𝜑) / 𝑥]𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜓)))
75, 6sylibd 238 . . . . . 6 ((𝑥𝐴 𝜑) ∈ 𝐴 → (∀𝑥𝐴 (𝜑𝜓) → ([(𝑥𝐴 𝜑) / 𝑥]𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜓)))
84, 7syl 17 . . . . 5 (∃!𝑥𝐴 𝜑 → (∀𝑥𝐴 (𝜑𝜓) → ([(𝑥𝐴 𝜑) / 𝑥]𝜑[(𝑥𝐴 𝜑) / 𝑥]𝜓)))
93, 8mpid 44 . . . 4 (∃!𝑥𝐴 𝜑 → (∀𝑥𝐴 (𝜑𝜓) → [(𝑥𝐴 𝜑) / 𝑥]𝜓))
101, 2, 9sylc 65 . . 3 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → [(𝑥𝐴 𝜑) / 𝑥]𝜓)
111, 4syl 17 . . . . 5 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → (𝑥𝐴 𝜑) ∈ 𝐴)
12 ssel 3914 . . . . . 6 (𝐴𝐵 → ((𝑥𝐴 𝜑) ∈ 𝐴 → (𝑥𝐴 𝜑) ∈ 𝐵))
1312ad2antrr 723 . . . . 5 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → ((𝑥𝐴 𝜑) ∈ 𝐴 → (𝑥𝐴 𝜑) ∈ 𝐵))
1411, 13mpd 15 . . . 4 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → (𝑥𝐴 𝜑) ∈ 𝐵)
15 simprr 770 . . . 4 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → ∃!𝑥𝐵 𝜓)
16 nfriota1 7239 . . . . 5 𝑥(𝑥𝐴 𝜑)
1716nfsbc1 3735 . . . . 5 𝑥[(𝑥𝐴 𝜑) / 𝑥]𝜓
18 sbceq1a 3727 . . . . 5 (𝑥 = (𝑥𝐴 𝜑) → (𝜓[(𝑥𝐴 𝜑) / 𝑥]𝜓))
1916, 17, 18riota2f 7257 . . . 4 (((𝑥𝐴 𝜑) ∈ 𝐵 ∧ ∃!𝑥𝐵 𝜓) → ([(𝑥𝐴 𝜑) / 𝑥]𝜓 ↔ (𝑥𝐵 𝜓) = (𝑥𝐴 𝜑)))
2014, 15, 19syl2anc 584 . . 3 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → ([(𝑥𝐴 𝜑) / 𝑥]𝜓 ↔ (𝑥𝐵 𝜓) = (𝑥𝐴 𝜑)))
2110, 20mpbid 231 . 2 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → (𝑥𝐵 𝜓) = (𝑥𝐴 𝜑))
2221eqcomd 2744 1 (((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → (𝑥𝐴 𝜑) = (𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  ∃!wreu 3066  [wsbc 3716  wss 3887  crio 7231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-un 3892  df-in 3894  df-ss 3904  df-sn 4562  df-pr 4564  df-uni 4840  df-iota 6391  df-riota 7232
This theorem is referenced by:  fisupcl  9228  quotlem  25460  adjbdln  30445  rexdiv  31200  cdlemefrs32fva  38414  addinvcom  40413
  Copyright terms: Public domain W3C validator