Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzwo4 Structured version   Visualization version   GIF version

Theorem uzwo4 41195
Description: Well-ordering principle: any nonempty subset of an upper set of integers has the least element. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
uzwo4.1 𝑗𝜓
uzwo4.2 (𝑗 = 𝑘 → (𝜑𝜓))
Assertion
Ref Expression
uzwo4 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))
Distinct variable groups:   𝑘,𝑀   𝑆,𝑗,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑗)   𝜓(𝑗,𝑘)   𝑀(𝑗)

Proof of Theorem uzwo4
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4055 . . . . . 6 {𝑗𝑆𝜑} ⊆ 𝑆
21a1i 11 . . . . 5 (𝑆 ⊆ (ℤ𝑀) → {𝑗𝑆𝜑} ⊆ 𝑆)
3 id 22 . . . . 5 (𝑆 ⊆ (ℤ𝑀) → 𝑆 ⊆ (ℤ𝑀))
42, 3sstrd 3976 . . . 4 (𝑆 ⊆ (ℤ𝑀) → {𝑗𝑆𝜑} ⊆ (ℤ𝑀))
54adantr 481 . . 3 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → {𝑗𝑆𝜑} ⊆ (ℤ𝑀))
6 rabn0 4338 . . . . . 6 ({𝑗𝑆𝜑} ≠ ∅ ↔ ∃𝑗𝑆 𝜑)
76bicomi 225 . . . . 5 (∃𝑗𝑆 𝜑 ↔ {𝑗𝑆𝜑} ≠ ∅)
87biimpi 217 . . . 4 (∃𝑗𝑆 𝜑 → {𝑗𝑆𝜑} ≠ ∅)
98adantl 482 . . 3 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → {𝑗𝑆𝜑} ≠ ∅)
10 uzwo 12300 . . 3 (({𝑗𝑆𝜑} ⊆ (ℤ𝑀) ∧ {𝑗𝑆𝜑} ≠ ∅) → ∃𝑖 ∈ {𝑗𝑆𝜑}∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
115, 9, 10syl2anc 584 . 2 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → ∃𝑖 ∈ {𝑗𝑆𝜑}∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
121sseli 3962 . . . . . . . 8 (𝑖 ∈ {𝑗𝑆𝜑} → 𝑖𝑆)
1312adantr 481 . . . . . . 7 ((𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → 𝑖𝑆)
14133adant1 1122 . . . . . 6 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → 𝑖𝑆)
15 nfcv 2977 . . . . . . . . . . . 12 𝑗𝑖
16 nfcv 2977 . . . . . . . . . . . 12 𝑗𝑆
1715nfsbc1 3790 . . . . . . . . . . . 12 𝑗[𝑖 / 𝑗]𝜑
18 sbceq1a 3782 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝜑[𝑖 / 𝑗]𝜑))
1915, 16, 17, 18elrabf 3675 . . . . . . . . . . 11 (𝑖 ∈ {𝑗𝑆𝜑} ↔ (𝑖𝑆[𝑖 / 𝑗]𝜑))
2019biimpi 217 . . . . . . . . . 10 (𝑖 ∈ {𝑗𝑆𝜑} → (𝑖𝑆[𝑖 / 𝑗]𝜑))
2120simprd 496 . . . . . . . . 9 (𝑖 ∈ {𝑗𝑆𝜑} → [𝑖 / 𝑗]𝜑)
2221adantr 481 . . . . . . . 8 ((𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → [𝑖 / 𝑗]𝜑)
23223adant1 1122 . . . . . . 7 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → [𝑖 / 𝑗]𝜑)
24 nfv 1906 . . . . . . . . 9 𝑘 𝑆 ⊆ (ℤ𝑀)
25 nfv 1906 . . . . . . . . 9 𝑘 𝑖 ∈ {𝑗𝑆𝜑}
26 nfra1 3219 . . . . . . . . 9 𝑘𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘
2724, 25, 26nf3an 1893 . . . . . . . 8 𝑘(𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
28 simpl13 1242 . . . . . . . . . . 11 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
29 simpl2 1184 . . . . . . . . . . 11 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → 𝑘𝑆)
30 simpr 485 . . . . . . . . . . 11 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → 𝜓)
31 simpll 763 . . . . . . . . . . . 12 (((∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘𝑘𝑆) ∧ 𝜓) → ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
32 id 22 . . . . . . . . . . . . . 14 ((𝑘𝑆𝜓) → (𝑘𝑆𝜓))
33 nfcv 2977 . . . . . . . . . . . . . . 15 𝑗𝑘
34 uzwo4.1 . . . . . . . . . . . . . . 15 𝑗𝜓
35 uzwo4.2 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝜑𝜓))
3633, 16, 34, 35elrabf 3675 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑗𝑆𝜑} ↔ (𝑘𝑆𝜓))
3732, 36sylibr 235 . . . . . . . . . . . . 13 ((𝑘𝑆𝜓) → 𝑘 ∈ {𝑗𝑆𝜑})
3837adantll 710 . . . . . . . . . . . 12 (((∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘𝑘𝑆) ∧ 𝜓) → 𝑘 ∈ {𝑗𝑆𝜑})
39 rspa 3206 . . . . . . . . . . . 12 ((∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘𝑘 ∈ {𝑗𝑆𝜑}) → 𝑖𝑘)
4031, 38, 39syl2anc 584 . . . . . . . . . . 11 (((∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘𝑘𝑆) ∧ 𝜓) → 𝑖𝑘)
4128, 29, 30, 40syl21anc 833 . . . . . . . . . 10 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → 𝑖𝑘)
424sselda 3966 . . . . . . . . . . . . . . . 16 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑}) → 𝑖 ∈ (ℤ𝑀))
43 eluzelz 12242 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (ℤ𝑀) → 𝑖 ∈ ℤ)
4442, 43syl 17 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑}) → 𝑖 ∈ ℤ)
4544zred 12076 . . . . . . . . . . . . . 14 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑}) → 𝑖 ∈ ℝ)
46453adant3 1124 . . . . . . . . . . . . 13 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → 𝑖 ∈ ℝ)
47463ad2ant1 1125 . . . . . . . . . . . 12 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → 𝑖 ∈ ℝ)
48 ssel2 3961 . . . . . . . . . . . . . . . 16 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑘𝑆) → 𝑘 ∈ (ℤ𝑀))
49 eluzelz 12242 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
5048, 49syl 17 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑘𝑆) → 𝑘 ∈ ℤ)
5150zred 12076 . . . . . . . . . . . . . 14 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑘𝑆) → 𝑘 ∈ ℝ)
52513ad2antl1 1177 . . . . . . . . . . . . 13 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆) → 𝑘 ∈ ℝ)
53523adant3 1124 . . . . . . . . . . . 12 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → 𝑘 ∈ ℝ)
54 simp3 1130 . . . . . . . . . . . 12 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → 𝑘 < 𝑖)
55 simp3 1130 . . . . . . . . . . . . 13 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → 𝑘 < 𝑖)
56 simp2 1129 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → 𝑘 ∈ ℝ)
57 simp1 1128 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → 𝑖 ∈ ℝ)
5856, 57ltnled 10776 . . . . . . . . . . . . 13 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → (𝑘 < 𝑖 ↔ ¬ 𝑖𝑘))
5955, 58mpbid 233 . . . . . . . . . . . 12 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → ¬ 𝑖𝑘)
6047, 53, 54, 59syl3anc 1363 . . . . . . . . . . 11 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → ¬ 𝑖𝑘)
6160adantr 481 . . . . . . . . . 10 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → ¬ 𝑖𝑘)
6241, 61pm2.65da 813 . . . . . . . . 9 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → ¬ 𝜓)
63623exp 1111 . . . . . . . 8 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → (𝑘𝑆 → (𝑘 < 𝑖 → ¬ 𝜓)))
6427, 63ralrimi 3216 . . . . . . 7 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓))
6523, 64jca 512 . . . . . 6 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → ([𝑖 / 𝑗]𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓)))
66 nfv 1906 . . . . . . . . . 10 𝑗 𝑘 < 𝑖
6734nfn 1848 . . . . . . . . . 10 𝑗 ¬ 𝜓
6866, 67nfim 1888 . . . . . . . . 9 𝑗(𝑘 < 𝑖 → ¬ 𝜓)
6916, 68nfralw 3225 . . . . . . . 8 𝑗𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓)
7017, 69nfan 1891 . . . . . . 7 𝑗([𝑖 / 𝑗]𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓))
71 breq2 5062 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑘 < 𝑗𝑘 < 𝑖))
7271imbi1d 343 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑘 < 𝑗 → ¬ 𝜓) ↔ (𝑘 < 𝑖 → ¬ 𝜓)))
7372ralbidv 3197 . . . . . . . 8 (𝑗 = 𝑖 → (∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓) ↔ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓)))
7418, 73anbi12d 630 . . . . . . 7 (𝑗 = 𝑖 → ((𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)) ↔ ([𝑖 / 𝑗]𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓))))
7570, 74rspce 3611 . . . . . 6 ((𝑖𝑆 ∧ ([𝑖 / 𝑗]𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓))) → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))
7614, 65, 75syl2anc 584 . . . . 5 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))
77763exp 1111 . . . 4 (𝑆 ⊆ (ℤ𝑀) → (𝑖 ∈ {𝑗𝑆𝜑} → (∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘 → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))))
7877rexlimdv 3283 . . 3 (𝑆 ⊆ (ℤ𝑀) → (∃𝑖 ∈ {𝑗𝑆𝜑}∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘 → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓))))
7978adantr 481 . 2 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → (∃𝑖 ∈ {𝑗𝑆𝜑}∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘 → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓))))
8011, 79mpd 15 1 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wnf 1775  wcel 2105  wne 3016  wral 3138  wrex 3139  {crab 3142  [wsbc 3771  wss 3935  c0 4290   class class class wbr 5058  cfv 6349  cr 10525   < clt 10664  cle 10665  cz 11970  cuz 12232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233
This theorem is referenced by:  iundjiun  42623
  Copyright terms: Public domain W3C validator