Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzwo4 Structured version   Visualization version   GIF version

Theorem uzwo4 42490
Description: Well-ordering principle: any nonempty subset of an upper set of integers has the least element. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
uzwo4.1 𝑗𝜓
uzwo4.2 (𝑗 = 𝑘 → (𝜑𝜓))
Assertion
Ref Expression
uzwo4 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))
Distinct variable groups:   𝑘,𝑀   𝑆,𝑗,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑗)   𝜓(𝑗,𝑘)   𝑀(𝑗)

Proof of Theorem uzwo4
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4009 . . . . . 6 {𝑗𝑆𝜑} ⊆ 𝑆
21a1i 11 . . . . 5 (𝑆 ⊆ (ℤ𝑀) → {𝑗𝑆𝜑} ⊆ 𝑆)
3 id 22 . . . . 5 (𝑆 ⊆ (ℤ𝑀) → 𝑆 ⊆ (ℤ𝑀))
42, 3sstrd 3927 . . . 4 (𝑆 ⊆ (ℤ𝑀) → {𝑗𝑆𝜑} ⊆ (ℤ𝑀))
54adantr 480 . . 3 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → {𝑗𝑆𝜑} ⊆ (ℤ𝑀))
6 rabn0 4316 . . . . . 6 ({𝑗𝑆𝜑} ≠ ∅ ↔ ∃𝑗𝑆 𝜑)
76bicomi 223 . . . . 5 (∃𝑗𝑆 𝜑 ↔ {𝑗𝑆𝜑} ≠ ∅)
87biimpi 215 . . . 4 (∃𝑗𝑆 𝜑 → {𝑗𝑆𝜑} ≠ ∅)
98adantl 481 . . 3 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → {𝑗𝑆𝜑} ≠ ∅)
10 uzwo 12580 . . 3 (({𝑗𝑆𝜑} ⊆ (ℤ𝑀) ∧ {𝑗𝑆𝜑} ≠ ∅) → ∃𝑖 ∈ {𝑗𝑆𝜑}∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
115, 9, 10syl2anc 583 . 2 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → ∃𝑖 ∈ {𝑗𝑆𝜑}∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
121sseli 3913 . . . . . . . 8 (𝑖 ∈ {𝑗𝑆𝜑} → 𝑖𝑆)
1312adantr 480 . . . . . . 7 ((𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → 𝑖𝑆)
14133adant1 1128 . . . . . 6 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → 𝑖𝑆)
15 nfcv 2906 . . . . . . . . . . . 12 𝑗𝑖
16 nfcv 2906 . . . . . . . . . . . 12 𝑗𝑆
1715nfsbc1 3730 . . . . . . . . . . . 12 𝑗[𝑖 / 𝑗]𝜑
18 sbceq1a 3722 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝜑[𝑖 / 𝑗]𝜑))
1915, 16, 17, 18elrabf 3613 . . . . . . . . . . 11 (𝑖 ∈ {𝑗𝑆𝜑} ↔ (𝑖𝑆[𝑖 / 𝑗]𝜑))
2019biimpi 215 . . . . . . . . . 10 (𝑖 ∈ {𝑗𝑆𝜑} → (𝑖𝑆[𝑖 / 𝑗]𝜑))
2120simprd 495 . . . . . . . . 9 (𝑖 ∈ {𝑗𝑆𝜑} → [𝑖 / 𝑗]𝜑)
2221adantr 480 . . . . . . . 8 ((𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → [𝑖 / 𝑗]𝜑)
23223adant1 1128 . . . . . . 7 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → [𝑖 / 𝑗]𝜑)
24 nfv 1918 . . . . . . . . 9 𝑘 𝑆 ⊆ (ℤ𝑀)
25 nfv 1918 . . . . . . . . 9 𝑘 𝑖 ∈ {𝑗𝑆𝜑}
26 nfra1 3142 . . . . . . . . 9 𝑘𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘
2724, 25, 26nf3an 1905 . . . . . . . 8 𝑘(𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
28 simpl13 1248 . . . . . . . . . . 11 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
29 simpl2 1190 . . . . . . . . . . 11 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → 𝑘𝑆)
30 simpr 484 . . . . . . . . . . 11 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → 𝜓)
31 simpll 763 . . . . . . . . . . . 12 (((∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘𝑘𝑆) ∧ 𝜓) → ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
32 id 22 . . . . . . . . . . . . . 14 ((𝑘𝑆𝜓) → (𝑘𝑆𝜓))
33 nfcv 2906 . . . . . . . . . . . . . . 15 𝑗𝑘
34 uzwo4.1 . . . . . . . . . . . . . . 15 𝑗𝜓
35 uzwo4.2 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝜑𝜓))
3633, 16, 34, 35elrabf 3613 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑗𝑆𝜑} ↔ (𝑘𝑆𝜓))
3732, 36sylibr 233 . . . . . . . . . . . . 13 ((𝑘𝑆𝜓) → 𝑘 ∈ {𝑗𝑆𝜑})
3837adantll 710 . . . . . . . . . . . 12 (((∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘𝑘𝑆) ∧ 𝜓) → 𝑘 ∈ {𝑗𝑆𝜑})
39 rspa 3130 . . . . . . . . . . . 12 ((∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘𝑘 ∈ {𝑗𝑆𝜑}) → 𝑖𝑘)
4031, 38, 39syl2anc 583 . . . . . . . . . . 11 (((∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘𝑘𝑆) ∧ 𝜓) → 𝑖𝑘)
4128, 29, 30, 40syl21anc 834 . . . . . . . . . 10 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → 𝑖𝑘)
424sselda 3917 . . . . . . . . . . . . . . . 16 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑}) → 𝑖 ∈ (ℤ𝑀))
43 eluzelz 12521 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (ℤ𝑀) → 𝑖 ∈ ℤ)
4442, 43syl 17 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑}) → 𝑖 ∈ ℤ)
4544zred 12355 . . . . . . . . . . . . . 14 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑}) → 𝑖 ∈ ℝ)
46453adant3 1130 . . . . . . . . . . . . 13 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → 𝑖 ∈ ℝ)
47463ad2ant1 1131 . . . . . . . . . . . 12 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → 𝑖 ∈ ℝ)
48 ssel2 3912 . . . . . . . . . . . . . . . 16 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑘𝑆) → 𝑘 ∈ (ℤ𝑀))
49 eluzelz 12521 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
5048, 49syl 17 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑘𝑆) → 𝑘 ∈ ℤ)
5150zred 12355 . . . . . . . . . . . . . 14 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑘𝑆) → 𝑘 ∈ ℝ)
52513ad2antl1 1183 . . . . . . . . . . . . 13 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆) → 𝑘 ∈ ℝ)
53523adant3 1130 . . . . . . . . . . . 12 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → 𝑘 ∈ ℝ)
54 simp3 1136 . . . . . . . . . . . 12 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → 𝑘 < 𝑖)
55 simp3 1136 . . . . . . . . . . . . 13 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → 𝑘 < 𝑖)
56 simp2 1135 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → 𝑘 ∈ ℝ)
57 simp1 1134 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → 𝑖 ∈ ℝ)
5856, 57ltnled 11052 . . . . . . . . . . . . 13 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → (𝑘 < 𝑖 ↔ ¬ 𝑖𝑘))
5955, 58mpbid 231 . . . . . . . . . . . 12 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → ¬ 𝑖𝑘)
6047, 53, 54, 59syl3anc 1369 . . . . . . . . . . 11 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → ¬ 𝑖𝑘)
6160adantr 480 . . . . . . . . . 10 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → ¬ 𝑖𝑘)
6241, 61pm2.65da 813 . . . . . . . . 9 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → ¬ 𝜓)
63623exp 1117 . . . . . . . 8 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → (𝑘𝑆 → (𝑘 < 𝑖 → ¬ 𝜓)))
6427, 63ralrimi 3139 . . . . . . 7 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓))
6523, 64jca 511 . . . . . 6 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → ([𝑖 / 𝑗]𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓)))
66 nfv 1918 . . . . . . . . . 10 𝑗 𝑘 < 𝑖
6734nfn 1861 . . . . . . . . . 10 𝑗 ¬ 𝜓
6866, 67nfim 1900 . . . . . . . . 9 𝑗(𝑘 < 𝑖 → ¬ 𝜓)
6916, 68nfralw 3149 . . . . . . . 8 𝑗𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓)
7017, 69nfan 1903 . . . . . . 7 𝑗([𝑖 / 𝑗]𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓))
71 breq2 5074 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑘 < 𝑗𝑘 < 𝑖))
7271imbi1d 341 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑘 < 𝑗 → ¬ 𝜓) ↔ (𝑘 < 𝑖 → ¬ 𝜓)))
7372ralbidv 3120 . . . . . . . 8 (𝑗 = 𝑖 → (∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓) ↔ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓)))
7418, 73anbi12d 630 . . . . . . 7 (𝑗 = 𝑖 → ((𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)) ↔ ([𝑖 / 𝑗]𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓))))
7570, 74rspce 3540 . . . . . 6 ((𝑖𝑆 ∧ ([𝑖 / 𝑗]𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓))) → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))
7614, 65, 75syl2anc 583 . . . . 5 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))
77763exp 1117 . . . 4 (𝑆 ⊆ (ℤ𝑀) → (𝑖 ∈ {𝑗𝑆𝜑} → (∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘 → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))))
7877rexlimdv 3211 . . 3 (𝑆 ⊆ (ℤ𝑀) → (∃𝑖 ∈ {𝑗𝑆𝜑}∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘 → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓))))
7978adantr 480 . 2 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → (∃𝑖 ∈ {𝑗𝑆𝜑}∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘 → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓))))
8011, 79mpd 15 1 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wnf 1787  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  [wsbc 3711  wss 3883  c0 4253   class class class wbr 5070  cfv 6418  cr 10801   < clt 10940  cle 10941  cz 12249  cuz 12511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512
This theorem is referenced by:  iundjiun  43888
  Copyright terms: Public domain W3C validator