Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzwo4 Structured version   Visualization version   GIF version

Theorem uzwo4 41608
Description: Well-ordering principle: any nonempty subset of an upper set of integers has the least element. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
uzwo4.1 𝑗𝜓
uzwo4.2 (𝑗 = 𝑘 → (𝜑𝜓))
Assertion
Ref Expression
uzwo4 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))
Distinct variable groups:   𝑘,𝑀   𝑆,𝑗,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑗)   𝜓(𝑗,𝑘)   𝑀(𝑗)

Proof of Theorem uzwo4
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 4043 . . . . . 6 {𝑗𝑆𝜑} ⊆ 𝑆
21a1i 11 . . . . 5 (𝑆 ⊆ (ℤ𝑀) → {𝑗𝑆𝜑} ⊆ 𝑆)
3 id 22 . . . . 5 (𝑆 ⊆ (ℤ𝑀) → 𝑆 ⊆ (ℤ𝑀))
42, 3sstrd 3964 . . . 4 (𝑆 ⊆ (ℤ𝑀) → {𝑗𝑆𝜑} ⊆ (ℤ𝑀))
54adantr 484 . . 3 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → {𝑗𝑆𝜑} ⊆ (ℤ𝑀))
6 rabn0 4323 . . . . . 6 ({𝑗𝑆𝜑} ≠ ∅ ↔ ∃𝑗𝑆 𝜑)
76bicomi 227 . . . . 5 (∃𝑗𝑆 𝜑 ↔ {𝑗𝑆𝜑} ≠ ∅)
87biimpi 219 . . . 4 (∃𝑗𝑆 𝜑 → {𝑗𝑆𝜑} ≠ ∅)
98adantl 485 . . 3 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → {𝑗𝑆𝜑} ≠ ∅)
10 uzwo 12311 . . 3 (({𝑗𝑆𝜑} ⊆ (ℤ𝑀) ∧ {𝑗𝑆𝜑} ≠ ∅) → ∃𝑖 ∈ {𝑗𝑆𝜑}∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
115, 9, 10syl2anc 587 . 2 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → ∃𝑖 ∈ {𝑗𝑆𝜑}∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
121sseli 3950 . . . . . . . 8 (𝑖 ∈ {𝑗𝑆𝜑} → 𝑖𝑆)
1312adantr 484 . . . . . . 7 ((𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → 𝑖𝑆)
14133adant1 1127 . . . . . 6 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → 𝑖𝑆)
15 nfcv 2982 . . . . . . . . . . . 12 𝑗𝑖
16 nfcv 2982 . . . . . . . . . . . 12 𝑗𝑆
1715nfsbc1 3778 . . . . . . . . . . . 12 𝑗[𝑖 / 𝑗]𝜑
18 sbceq1a 3770 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝜑[𝑖 / 𝑗]𝜑))
1915, 16, 17, 18elrabf 3663 . . . . . . . . . . 11 (𝑖 ∈ {𝑗𝑆𝜑} ↔ (𝑖𝑆[𝑖 / 𝑗]𝜑))
2019biimpi 219 . . . . . . . . . 10 (𝑖 ∈ {𝑗𝑆𝜑} → (𝑖𝑆[𝑖 / 𝑗]𝜑))
2120simprd 499 . . . . . . . . 9 (𝑖 ∈ {𝑗𝑆𝜑} → [𝑖 / 𝑗]𝜑)
2221adantr 484 . . . . . . . 8 ((𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → [𝑖 / 𝑗]𝜑)
23223adant1 1127 . . . . . . 7 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → [𝑖 / 𝑗]𝜑)
24 nfv 1916 . . . . . . . . 9 𝑘 𝑆 ⊆ (ℤ𝑀)
25 nfv 1916 . . . . . . . . 9 𝑘 𝑖 ∈ {𝑗𝑆𝜑}
26 nfra1 3214 . . . . . . . . 9 𝑘𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘
2724, 25, 26nf3an 1903 . . . . . . . 8 𝑘(𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
28 simpl13 1247 . . . . . . . . . . 11 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
29 simpl2 1189 . . . . . . . . . . 11 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → 𝑘𝑆)
30 simpr 488 . . . . . . . . . . 11 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → 𝜓)
31 simpll 766 . . . . . . . . . . . 12 (((∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘𝑘𝑆) ∧ 𝜓) → ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
32 id 22 . . . . . . . . . . . . . 14 ((𝑘𝑆𝜓) → (𝑘𝑆𝜓))
33 nfcv 2982 . . . . . . . . . . . . . . 15 𝑗𝑘
34 uzwo4.1 . . . . . . . . . . . . . . 15 𝑗𝜓
35 uzwo4.2 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝜑𝜓))
3633, 16, 34, 35elrabf 3663 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑗𝑆𝜑} ↔ (𝑘𝑆𝜓))
3732, 36sylibr 237 . . . . . . . . . . . . 13 ((𝑘𝑆𝜓) → 𝑘 ∈ {𝑗𝑆𝜑})
3837adantll 713 . . . . . . . . . . . 12 (((∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘𝑘𝑆) ∧ 𝜓) → 𝑘 ∈ {𝑗𝑆𝜑})
39 rspa 3201 . . . . . . . . . . . 12 ((∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘𝑘 ∈ {𝑗𝑆𝜑}) → 𝑖𝑘)
4031, 38, 39syl2anc 587 . . . . . . . . . . 11 (((∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘𝑘𝑆) ∧ 𝜓) → 𝑖𝑘)
4128, 29, 30, 40syl21anc 836 . . . . . . . . . 10 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → 𝑖𝑘)
424sselda 3954 . . . . . . . . . . . . . . . 16 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑}) → 𝑖 ∈ (ℤ𝑀))
43 eluzelz 12253 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (ℤ𝑀) → 𝑖 ∈ ℤ)
4442, 43syl 17 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑}) → 𝑖 ∈ ℤ)
4544zred 12087 . . . . . . . . . . . . . 14 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑}) → 𝑖 ∈ ℝ)
46453adant3 1129 . . . . . . . . . . . . 13 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → 𝑖 ∈ ℝ)
47463ad2ant1 1130 . . . . . . . . . . . 12 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → 𝑖 ∈ ℝ)
48 ssel2 3949 . . . . . . . . . . . . . . . 16 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑘𝑆) → 𝑘 ∈ (ℤ𝑀))
49 eluzelz 12253 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
5048, 49syl 17 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑘𝑆) → 𝑘 ∈ ℤ)
5150zred 12087 . . . . . . . . . . . . . 14 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑘𝑆) → 𝑘 ∈ ℝ)
52513ad2antl1 1182 . . . . . . . . . . . . 13 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆) → 𝑘 ∈ ℝ)
53523adant3 1129 . . . . . . . . . . . 12 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → 𝑘 ∈ ℝ)
54 simp3 1135 . . . . . . . . . . . 12 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → 𝑘 < 𝑖)
55 simp3 1135 . . . . . . . . . . . . 13 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → 𝑘 < 𝑖)
56 simp2 1134 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → 𝑘 ∈ ℝ)
57 simp1 1133 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → 𝑖 ∈ ℝ)
5856, 57ltnled 10786 . . . . . . . . . . . . 13 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → (𝑘 < 𝑖 ↔ ¬ 𝑖𝑘))
5955, 58mpbid 235 . . . . . . . . . . . 12 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → ¬ 𝑖𝑘)
6047, 53, 54, 59syl3anc 1368 . . . . . . . . . . 11 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → ¬ 𝑖𝑘)
6160adantr 484 . . . . . . . . . 10 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → ¬ 𝑖𝑘)
6241, 61pm2.65da 816 . . . . . . . . 9 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → ¬ 𝜓)
63623exp 1116 . . . . . . . 8 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → (𝑘𝑆 → (𝑘 < 𝑖 → ¬ 𝜓)))
6427, 63ralrimi 3211 . . . . . . 7 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓))
6523, 64jca 515 . . . . . 6 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → ([𝑖 / 𝑗]𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓)))
66 nfv 1916 . . . . . . . . . 10 𝑗 𝑘 < 𝑖
6734nfn 1858 . . . . . . . . . 10 𝑗 ¬ 𝜓
6866, 67nfim 1898 . . . . . . . . 9 𝑗(𝑘 < 𝑖 → ¬ 𝜓)
6916, 68nfralw 3220 . . . . . . . 8 𝑗𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓)
7017, 69nfan 1901 . . . . . . 7 𝑗([𝑖 / 𝑗]𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓))
71 breq2 5057 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑘 < 𝑗𝑘 < 𝑖))
7271imbi1d 345 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑘 < 𝑗 → ¬ 𝜓) ↔ (𝑘 < 𝑖 → ¬ 𝜓)))
7372ralbidv 3192 . . . . . . . 8 (𝑗 = 𝑖 → (∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓) ↔ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓)))
7418, 73anbi12d 633 . . . . . . 7 (𝑗 = 𝑖 → ((𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)) ↔ ([𝑖 / 𝑗]𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓))))
7570, 74rspce 3599 . . . . . 6 ((𝑖𝑆 ∧ ([𝑖 / 𝑗]𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓))) → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))
7614, 65, 75syl2anc 587 . . . . 5 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))
77763exp 1116 . . . 4 (𝑆 ⊆ (ℤ𝑀) → (𝑖 ∈ {𝑗𝑆𝜑} → (∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘 → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))))
7877rexlimdv 3276 . . 3 (𝑆 ⊆ (ℤ𝑀) → (∃𝑖 ∈ {𝑗𝑆𝜑}∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘 → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓))))
7978adantr 484 . 2 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → (∃𝑖 ∈ {𝑗𝑆𝜑}∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘 → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓))))
8011, 79mpd 15 1 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wnf 1785  wcel 2115  wne 3014  wral 3133  wrex 3134  {crab 3137  [wsbc 3759  wss 3920  c0 4277   class class class wbr 5053  cfv 6344  cr 10535   < clt 10674  cle 10675  cz 11981  cuz 12243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11898  df-z 11982  df-uz 12244
This theorem is referenced by:  iundjiun  43026
  Copyright terms: Public domain W3C validator