Step | Hyp | Ref
| Expression |
1 | | ssrab2 4009 |
. . . . . 6
⊢ {𝑗 ∈ 𝑆 ∣ 𝜑} ⊆ 𝑆 |
2 | 1 | a1i 11 |
. . . . 5
⊢ (𝑆 ⊆
(ℤ≥‘𝑀) → {𝑗 ∈ 𝑆 ∣ 𝜑} ⊆ 𝑆) |
3 | | id 22 |
. . . . 5
⊢ (𝑆 ⊆
(ℤ≥‘𝑀) → 𝑆 ⊆ (ℤ≥‘𝑀)) |
4 | 2, 3 | sstrd 3927 |
. . . 4
⊢ (𝑆 ⊆
(ℤ≥‘𝑀) → {𝑗 ∈ 𝑆 ∣ 𝜑} ⊆
(ℤ≥‘𝑀)) |
5 | 4 | adantr 480 |
. . 3
⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ ∃𝑗 ∈ 𝑆 𝜑) → {𝑗 ∈ 𝑆 ∣ 𝜑} ⊆
(ℤ≥‘𝑀)) |
6 | | rabn0 4316 |
. . . . . 6
⊢ ({𝑗 ∈ 𝑆 ∣ 𝜑} ≠ ∅ ↔ ∃𝑗 ∈ 𝑆 𝜑) |
7 | 6 | bicomi 223 |
. . . . 5
⊢
(∃𝑗 ∈
𝑆 𝜑 ↔ {𝑗 ∈ 𝑆 ∣ 𝜑} ≠ ∅) |
8 | 7 | biimpi 215 |
. . . 4
⊢
(∃𝑗 ∈
𝑆 𝜑 → {𝑗 ∈ 𝑆 ∣ 𝜑} ≠ ∅) |
9 | 8 | adantl 481 |
. . 3
⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ ∃𝑗 ∈ 𝑆 𝜑) → {𝑗 ∈ 𝑆 ∣ 𝜑} ≠ ∅) |
10 | | uzwo 12580 |
. . 3
⊢ (({𝑗 ∈ 𝑆 ∣ 𝜑} ⊆
(ℤ≥‘𝑀) ∧ {𝑗 ∈ 𝑆 ∣ 𝜑} ≠ ∅) → ∃𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) |
11 | 5, 9, 10 | syl2anc 583 |
. 2
⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ ∃𝑗 ∈ 𝑆 𝜑) → ∃𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) |
12 | 1 | sseli 3913 |
. . . . . . . 8
⊢ (𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} → 𝑖 ∈ 𝑆) |
13 | 12 | adantr 480 |
. . . . . . 7
⊢ ((𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) → 𝑖 ∈ 𝑆) |
14 | 13 | 3adant1 1128 |
. . . . . 6
⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) → 𝑖 ∈ 𝑆) |
15 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗𝑖 |
16 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗𝑆 |
17 | 15 | nfsbc1 3730 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗[𝑖 / 𝑗]𝜑 |
18 | | sbceq1a 3722 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑖 → (𝜑 ↔ [𝑖 / 𝑗]𝜑)) |
19 | 15, 16, 17, 18 | elrabf 3613 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ↔ (𝑖 ∈ 𝑆 ∧ [𝑖 / 𝑗]𝜑)) |
20 | 19 | biimpi 215 |
. . . . . . . . . 10
⊢ (𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} → (𝑖 ∈ 𝑆 ∧ [𝑖 / 𝑗]𝜑)) |
21 | 20 | simprd 495 |
. . . . . . . . 9
⊢ (𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} → [𝑖 / 𝑗]𝜑) |
22 | 21 | adantr 480 |
. . . . . . . 8
⊢ ((𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) → [𝑖 / 𝑗]𝜑) |
23 | 22 | 3adant1 1128 |
. . . . . . 7
⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) → [𝑖 / 𝑗]𝜑) |
24 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑘 𝑆 ⊆
(ℤ≥‘𝑀) |
25 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑘 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} |
26 | | nfra1 3142 |
. . . . . . . . 9
⊢
Ⅎ𝑘∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘 |
27 | 24, 25, 26 | nf3an 1905 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) |
28 | | simpl13 1248 |
. . . . . . . . . . 11
⊢ ((((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) ∧ 𝑘 ∈ 𝑆 ∧ 𝑘 < 𝑖) ∧ 𝜓) → ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) |
29 | | simpl2 1190 |
. . . . . . . . . . 11
⊢ ((((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) ∧ 𝑘 ∈ 𝑆 ∧ 𝑘 < 𝑖) ∧ 𝜓) → 𝑘 ∈ 𝑆) |
30 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) ∧ 𝑘 ∈ 𝑆 ∧ 𝑘 < 𝑖) ∧ 𝜓) → 𝜓) |
31 | | simpll 763 |
. . . . . . . . . . . 12
⊢
(((∀𝑘 ∈
{𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘 ∧ 𝑘 ∈ 𝑆) ∧ 𝜓) → ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) |
32 | | id 22 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ 𝑆 ∧ 𝜓) → (𝑘 ∈ 𝑆 ∧ 𝜓)) |
33 | | nfcv 2906 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗𝑘 |
34 | | uzwo4.1 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗𝜓 |
35 | | uzwo4.2 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜓)) |
36 | 33, 16, 34, 35 | elrabf 3613 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ↔ (𝑘 ∈ 𝑆 ∧ 𝜓)) |
37 | 32, 36 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ 𝑆 ∧ 𝜓) → 𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}) |
38 | 37 | adantll 710 |
. . . . . . . . . . . 12
⊢
(((∀𝑘 ∈
{𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘 ∧ 𝑘 ∈ 𝑆) ∧ 𝜓) → 𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}) |
39 | | rspa 3130 |
. . . . . . . . . . . 12
⊢
((∀𝑘 ∈
{𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘 ∧ 𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}) → 𝑖 ≤ 𝑘) |
40 | 31, 38, 39 | syl2anc 583 |
. . . . . . . . . . 11
⊢
(((∀𝑘 ∈
{𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘 ∧ 𝑘 ∈ 𝑆) ∧ 𝜓) → 𝑖 ≤ 𝑘) |
41 | 28, 29, 30, 40 | syl21anc 834 |
. . . . . . . . . 10
⊢ ((((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) ∧ 𝑘 ∈ 𝑆 ∧ 𝑘 < 𝑖) ∧ 𝜓) → 𝑖 ≤ 𝑘) |
42 | 4 | sselda 3917 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}) → 𝑖 ∈ (ℤ≥‘𝑀)) |
43 | | eluzelz 12521 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈
(ℤ≥‘𝑀) → 𝑖 ∈ ℤ) |
44 | 42, 43 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}) → 𝑖 ∈ ℤ) |
45 | 44 | zred 12355 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}) → 𝑖 ∈ ℝ) |
46 | 45 | 3adant3 1130 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) → 𝑖 ∈ ℝ) |
47 | 46 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ (((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) ∧ 𝑘 ∈ 𝑆 ∧ 𝑘 < 𝑖) → 𝑖 ∈ ℝ) |
48 | | ssel2 3912 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑘 ∈ 𝑆) → 𝑘 ∈ (ℤ≥‘𝑀)) |
49 | | eluzelz 12521 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑘 ∈ 𝑆) → 𝑘 ∈ ℤ) |
51 | 50 | zred 12355 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑘 ∈ 𝑆) → 𝑘 ∈ ℝ) |
52 | 51 | 3ad2antl1 1183 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) ∧ 𝑘 ∈ 𝑆) → 𝑘 ∈ ℝ) |
53 | 52 | 3adant3 1130 |
. . . . . . . . . . . 12
⊢ (((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) ∧ 𝑘 ∈ 𝑆 ∧ 𝑘 < 𝑖) → 𝑘 ∈ ℝ) |
54 | | simp3 1136 |
. . . . . . . . . . . 12
⊢ (((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) ∧ 𝑘 ∈ 𝑆 ∧ 𝑘 < 𝑖) → 𝑘 < 𝑖) |
55 | | simp3 1136 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → 𝑘 < 𝑖) |
56 | | simp2 1135 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → 𝑘 ∈ ℝ) |
57 | | simp1 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → 𝑖 ∈ ℝ) |
58 | 56, 57 | ltnled 11052 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → (𝑘 < 𝑖 ↔ ¬ 𝑖 ≤ 𝑘)) |
59 | 55, 58 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → ¬ 𝑖 ≤ 𝑘) |
60 | 47, 53, 54, 59 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) ∧ 𝑘 ∈ 𝑆 ∧ 𝑘 < 𝑖) → ¬ 𝑖 ≤ 𝑘) |
61 | 60 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) ∧ 𝑘 ∈ 𝑆 ∧ 𝑘 < 𝑖) ∧ 𝜓) → ¬ 𝑖 ≤ 𝑘) |
62 | 41, 61 | pm2.65da 813 |
. . . . . . . . 9
⊢ (((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) ∧ 𝑘 ∈ 𝑆 ∧ 𝑘 < 𝑖) → ¬ 𝜓) |
63 | 62 | 3exp 1117 |
. . . . . . . 8
⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) → (𝑘 ∈ 𝑆 → (𝑘 < 𝑖 → ¬ 𝜓))) |
64 | 27, 63 | ralrimi 3139 |
. . . . . . 7
⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) → ∀𝑘 ∈ 𝑆 (𝑘 < 𝑖 → ¬ 𝜓)) |
65 | 23, 64 | jca 511 |
. . . . . 6
⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) → ([𝑖 / 𝑗]𝜑 ∧ ∀𝑘 ∈ 𝑆 (𝑘 < 𝑖 → ¬ 𝜓))) |
66 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑗 𝑘 < 𝑖 |
67 | 34 | nfn 1861 |
. . . . . . . . . 10
⊢
Ⅎ𝑗 ¬ 𝜓 |
68 | 66, 67 | nfim 1900 |
. . . . . . . . 9
⊢
Ⅎ𝑗(𝑘 < 𝑖 → ¬ 𝜓) |
69 | 16, 68 | nfralw 3149 |
. . . . . . . 8
⊢
Ⅎ𝑗∀𝑘 ∈ 𝑆 (𝑘 < 𝑖 → ¬ 𝜓) |
70 | 17, 69 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑗([𝑖 / 𝑗]𝜑 ∧ ∀𝑘 ∈ 𝑆 (𝑘 < 𝑖 → ¬ 𝜓)) |
71 | | breq2 5074 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → (𝑘 < 𝑗 ↔ 𝑘 < 𝑖)) |
72 | 71 | imbi1d 341 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → ((𝑘 < 𝑗 → ¬ 𝜓) ↔ (𝑘 < 𝑖 → ¬ 𝜓))) |
73 | 72 | ralbidv 3120 |
. . . . . . . 8
⊢ (𝑗 = 𝑖 → (∀𝑘 ∈ 𝑆 (𝑘 < 𝑗 → ¬ 𝜓) ↔ ∀𝑘 ∈ 𝑆 (𝑘 < 𝑖 → ¬ 𝜓))) |
74 | 18, 73 | anbi12d 630 |
. . . . . . 7
⊢ (𝑗 = 𝑖 → ((𝜑 ∧ ∀𝑘 ∈ 𝑆 (𝑘 < 𝑗 → ¬ 𝜓)) ↔ ([𝑖 / 𝑗]𝜑 ∧ ∀𝑘 ∈ 𝑆 (𝑘 < 𝑖 → ¬ 𝜓)))) |
75 | 70, 74 | rspce 3540 |
. . . . . 6
⊢ ((𝑖 ∈ 𝑆 ∧ ([𝑖 / 𝑗]𝜑 ∧ ∀𝑘 ∈ 𝑆 (𝑘 < 𝑖 → ¬ 𝜓))) → ∃𝑗 ∈ 𝑆 (𝜑 ∧ ∀𝑘 ∈ 𝑆 (𝑘 < 𝑗 → ¬ 𝜓))) |
76 | 14, 65, 75 | syl2anc 583 |
. . . . 5
⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ 𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} ∧ ∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘) → ∃𝑗 ∈ 𝑆 (𝜑 ∧ ∀𝑘 ∈ 𝑆 (𝑘 < 𝑗 → ¬ 𝜓))) |
77 | 76 | 3exp 1117 |
. . . 4
⊢ (𝑆 ⊆
(ℤ≥‘𝑀) → (𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑} → (∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘 → ∃𝑗 ∈ 𝑆 (𝜑 ∧ ∀𝑘 ∈ 𝑆 (𝑘 < 𝑗 → ¬ 𝜓))))) |
78 | 77 | rexlimdv 3211 |
. . 3
⊢ (𝑆 ⊆
(ℤ≥‘𝑀) → (∃𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘 → ∃𝑗 ∈ 𝑆 (𝜑 ∧ ∀𝑘 ∈ 𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))) |
79 | 78 | adantr 480 |
. 2
⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ ∃𝑗 ∈ 𝑆 𝜑) → (∃𝑖 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}∀𝑘 ∈ {𝑗 ∈ 𝑆 ∣ 𝜑}𝑖 ≤ 𝑘 → ∃𝑗 ∈ 𝑆 (𝜑 ∧ ∀𝑘 ∈ 𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))) |
80 | 11, 79 | mpd 15 |
1
⊢ ((𝑆 ⊆
(ℤ≥‘𝑀) ∧ ∃𝑗 ∈ 𝑆 𝜑) → ∃𝑗 ∈ 𝑆 (𝜑 ∧ ∀𝑘 ∈ 𝑆 (𝑘 < 𝑗 → ¬ 𝜓))) |