Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uzwo4 Structured version   Visualization version   GIF version

Theorem uzwo4 40162
Description: Well-ordering principle: any nonempty subset of an upper set of integers has the least element. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
uzwo4.1 𝑗𝜓
uzwo4.2 (𝑗 = 𝑘 → (𝜑𝜓))
Assertion
Ref Expression
uzwo4 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))
Distinct variable groups:   𝑘,𝑀   𝑆,𝑗,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑗)   𝜓(𝑗,𝑘)   𝑀(𝑗)

Proof of Theorem uzwo4
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3908 . . . . . 6 {𝑗𝑆𝜑} ⊆ 𝑆
21a1i 11 . . . . 5 (𝑆 ⊆ (ℤ𝑀) → {𝑗𝑆𝜑} ⊆ 𝑆)
3 id 22 . . . . 5 (𝑆 ⊆ (ℤ𝑀) → 𝑆 ⊆ (ℤ𝑀))
42, 3sstrd 3831 . . . 4 (𝑆 ⊆ (ℤ𝑀) → {𝑗𝑆𝜑} ⊆ (ℤ𝑀))
54adantr 474 . . 3 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → {𝑗𝑆𝜑} ⊆ (ℤ𝑀))
6 rabn0 4188 . . . . . 6 ({𝑗𝑆𝜑} ≠ ∅ ↔ ∃𝑗𝑆 𝜑)
76bicomi 216 . . . . 5 (∃𝑗𝑆 𝜑 ↔ {𝑗𝑆𝜑} ≠ ∅)
87biimpi 208 . . . 4 (∃𝑗𝑆 𝜑 → {𝑗𝑆𝜑} ≠ ∅)
98adantl 475 . . 3 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → {𝑗𝑆𝜑} ≠ ∅)
10 uzwo 12062 . . 3 (({𝑗𝑆𝜑} ⊆ (ℤ𝑀) ∧ {𝑗𝑆𝜑} ≠ ∅) → ∃𝑖 ∈ {𝑗𝑆𝜑}∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
115, 9, 10syl2anc 579 . 2 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → ∃𝑖 ∈ {𝑗𝑆𝜑}∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
121sseli 3817 . . . . . . . 8 (𝑖 ∈ {𝑗𝑆𝜑} → 𝑖𝑆)
1312adantr 474 . . . . . . 7 ((𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → 𝑖𝑆)
14133adant1 1121 . . . . . 6 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → 𝑖𝑆)
15 nfcv 2934 . . . . . . . . . . . 12 𝑗𝑖
16 nfcv 2934 . . . . . . . . . . . 12 𝑗𝑆
1715nfsbc1 3671 . . . . . . . . . . . 12 𝑗[𝑖 / 𝑗]𝜑
18 sbceq1a 3663 . . . . . . . . . . . 12 (𝑗 = 𝑖 → (𝜑[𝑖 / 𝑗]𝜑))
1915, 16, 17, 18elrabf 3568 . . . . . . . . . . 11 (𝑖 ∈ {𝑗𝑆𝜑} ↔ (𝑖𝑆[𝑖 / 𝑗]𝜑))
2019biimpi 208 . . . . . . . . . 10 (𝑖 ∈ {𝑗𝑆𝜑} → (𝑖𝑆[𝑖 / 𝑗]𝜑))
2120simprd 491 . . . . . . . . 9 (𝑖 ∈ {𝑗𝑆𝜑} → [𝑖 / 𝑗]𝜑)
2221adantr 474 . . . . . . . 8 ((𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → [𝑖 / 𝑗]𝜑)
23223adant1 1121 . . . . . . 7 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → [𝑖 / 𝑗]𝜑)
24 nfv 1957 . . . . . . . . 9 𝑘 𝑆 ⊆ (ℤ𝑀)
25 nfv 1957 . . . . . . . . 9 𝑘 𝑖 ∈ {𝑗𝑆𝜑}
26 nfra1 3123 . . . . . . . . 9 𝑘𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘
2724, 25, 26nf3an 1948 . . . . . . . 8 𝑘(𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
28 simpl13 1290 . . . . . . . . . . 11 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
29 simpl2 1201 . . . . . . . . . . 11 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → 𝑘𝑆)
30 simpr 479 . . . . . . . . . . 11 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → 𝜓)
31 simpll 757 . . . . . . . . . . . 12 (((∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘𝑘𝑆) ∧ 𝜓) → ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘)
32 id 22 . . . . . . . . . . . . . 14 ((𝑘𝑆𝜓) → (𝑘𝑆𝜓))
33 nfcv 2934 . . . . . . . . . . . . . . 15 𝑗𝑘
34 uzwo4.1 . . . . . . . . . . . . . . 15 𝑗𝜓
35 uzwo4.2 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝜑𝜓))
3633, 16, 34, 35elrabf 3568 . . . . . . . . . . . . . 14 (𝑘 ∈ {𝑗𝑆𝜑} ↔ (𝑘𝑆𝜓))
3732, 36sylibr 226 . . . . . . . . . . . . 13 ((𝑘𝑆𝜓) → 𝑘 ∈ {𝑗𝑆𝜑})
3837adantll 704 . . . . . . . . . . . 12 (((∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘𝑘𝑆) ∧ 𝜓) → 𝑘 ∈ {𝑗𝑆𝜑})
39 rspa 3112 . . . . . . . . . . . 12 ((∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘𝑘 ∈ {𝑗𝑆𝜑}) → 𝑖𝑘)
4031, 38, 39syl2anc 579 . . . . . . . . . . 11 (((∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘𝑘𝑆) ∧ 𝜓) → 𝑖𝑘)
4128, 29, 30, 40syl21anc 828 . . . . . . . . . 10 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → 𝑖𝑘)
424sselda 3821 . . . . . . . . . . . . . . . 16 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑}) → 𝑖 ∈ (ℤ𝑀))
43 eluzelz 12006 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (ℤ𝑀) → 𝑖 ∈ ℤ)
4442, 43syl 17 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑}) → 𝑖 ∈ ℤ)
4544zred 11838 . . . . . . . . . . . . . 14 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑}) → 𝑖 ∈ ℝ)
46453adant3 1123 . . . . . . . . . . . . 13 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → 𝑖 ∈ ℝ)
47463ad2ant1 1124 . . . . . . . . . . . 12 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → 𝑖 ∈ ℝ)
48 ssel2 3816 . . . . . . . . . . . . . . . 16 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑘𝑆) → 𝑘 ∈ (ℤ𝑀))
49 eluzelz 12006 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
5048, 49syl 17 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑘𝑆) → 𝑘 ∈ ℤ)
5150zred 11838 . . . . . . . . . . . . . 14 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑘𝑆) → 𝑘 ∈ ℝ)
52513ad2antl1 1193 . . . . . . . . . . . . 13 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆) → 𝑘 ∈ ℝ)
53523adant3 1123 . . . . . . . . . . . 12 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → 𝑘 ∈ ℝ)
54 simp3 1129 . . . . . . . . . . . 12 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → 𝑘 < 𝑖)
55 simp3 1129 . . . . . . . . . . . . 13 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → 𝑘 < 𝑖)
56 simp2 1128 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → 𝑘 ∈ ℝ)
57 simp1 1127 . . . . . . . . . . . . . 14 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → 𝑖 ∈ ℝ)
5856, 57ltnled 10525 . . . . . . . . . . . . 13 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → (𝑘 < 𝑖 ↔ ¬ 𝑖𝑘))
5955, 58mpbid 224 . . . . . . . . . . . 12 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑘 < 𝑖) → ¬ 𝑖𝑘)
6047, 53, 54, 59syl3anc 1439 . . . . . . . . . . 11 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → ¬ 𝑖𝑘)
6160adantr 474 . . . . . . . . . 10 ((((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) ∧ 𝜓) → ¬ 𝑖𝑘)
6241, 61pm2.65da 807 . . . . . . . . 9 (((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) ∧ 𝑘𝑆𝑘 < 𝑖) → ¬ 𝜓)
63623exp 1109 . . . . . . . 8 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → (𝑘𝑆 → (𝑘 < 𝑖 → ¬ 𝜓)))
6427, 63ralrimi 3139 . . . . . . 7 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓))
6523, 64jca 507 . . . . . 6 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → ([𝑖 / 𝑗]𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓)))
66 nfv 1957 . . . . . . . . . 10 𝑗 𝑘 < 𝑖
6734nfn 1902 . . . . . . . . . 10 𝑗 ¬ 𝜓
6866, 67nfim 1943 . . . . . . . . 9 𝑗(𝑘 < 𝑖 → ¬ 𝜓)
6916, 68nfral 3127 . . . . . . . 8 𝑗𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓)
7017, 69nfan 1946 . . . . . . 7 𝑗([𝑖 / 𝑗]𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓))
71 breq2 4892 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑘 < 𝑗𝑘 < 𝑖))
7271imbi1d 333 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑘 < 𝑗 → ¬ 𝜓) ↔ (𝑘 < 𝑖 → ¬ 𝜓)))
7372ralbidv 3168 . . . . . . . 8 (𝑗 = 𝑖 → (∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓) ↔ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓)))
7418, 73anbi12d 624 . . . . . . 7 (𝑗 = 𝑖 → ((𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)) ↔ ([𝑖 / 𝑗]𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓))))
7570, 74rspce 3506 . . . . . 6 ((𝑖𝑆 ∧ ([𝑖 / 𝑗]𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑖 → ¬ 𝜓))) → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))
7614, 65, 75syl2anc 579 . . . . 5 ((𝑆 ⊆ (ℤ𝑀) ∧ 𝑖 ∈ {𝑗𝑆𝜑} ∧ ∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘) → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))
77763exp 1109 . . . 4 (𝑆 ⊆ (ℤ𝑀) → (𝑖 ∈ {𝑗𝑆𝜑} → (∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘 → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))))
7877rexlimdv 3212 . . 3 (𝑆 ⊆ (ℤ𝑀) → (∃𝑖 ∈ {𝑗𝑆𝜑}∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘 → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓))))
7978adantr 474 . 2 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → (∃𝑖 ∈ {𝑗𝑆𝜑}∀𝑘 ∈ {𝑗𝑆𝜑}𝑖𝑘 → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓))))
8011, 79mpd 15 1 ((𝑆 ⊆ (ℤ𝑀) ∧ ∃𝑗𝑆 𝜑) → ∃𝑗𝑆 (𝜑 ∧ ∀𝑘𝑆 (𝑘 < 𝑗 → ¬ 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wnf 1827  wcel 2107  wne 2969  wral 3090  wrex 3091  {crab 3094  [wsbc 3652  wss 3792  c0 4141   class class class wbr 4888  cfv 6137  cr 10273   < clt 10413  cle 10414  cz 11732  cuz 11996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-n0 11647  df-z 11733  df-uz 11997
This theorem is referenced by:  iundjiun  41611
  Copyright terms: Public domain W3C validator