Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfsbc1d | Structured version Visualization version GIF version |
Description: Deduction version of nfsbc1 3730. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.) |
Ref | Expression |
---|---|
nfsbc1d.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfsbc1d | ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sbc 3712 | . 2 ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝐴 ∈ {𝑥 ∣ 𝜓}) | |
2 | nfsbc1d.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfab1 2908 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜓} | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑥 ∣ 𝜓}) |
5 | 2, 4 | nfeld 2917 | . 2 ⊢ (𝜑 → Ⅎ𝑥 𝐴 ∈ {𝑥 ∣ 𝜓}) |
6 | 1, 5 | nfxfrd 1857 | 1 ⊢ (𝜑 → Ⅎ𝑥[𝐴 / 𝑥]𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1787 ∈ wcel 2108 {cab 2715 Ⅎwnfc 2886 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-sbc 3712 |
This theorem is referenced by: nfsbc1 3730 nfcsb1d 3851 |
Copyright terms: Public domain | W3C validator |