| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfun | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfun.1 | ⊢ Ⅎ𝑥𝐴 |
| nfun.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfun | ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 4104 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∪ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) | |
| 2 | nfun.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfun.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 6 | 3, 5 | nfor 1904 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵) |
| 7 | 1, 6 | nfxfr 1853 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∪ 𝐵) |
| 8 | 7 | nfci 2879 | 1 ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 ∈ wcel 2109 Ⅎwnfc 2876 ∪ cun 3901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3438 df-un 3908 |
| This theorem is referenced by: nfsymdif 4208 csbun 4392 iunxdif3 5044 nfsuc 6381 nfsup 9341 nfdju 9803 iunconn 23313 nosupbnd2 27626 noinfbnd2 27641 ordtconnlem1 33891 esumsplit 34020 measvuni 34181 bnj958 34907 bnj1000 34908 bnj1408 35003 bnj1446 35012 bnj1447 35013 bnj1448 35014 bnj1466 35020 bnj1467 35021 rdgssun 37352 exrecfnlem 37353 poimirlem16 37616 poimirlem19 37619 pimxrneun 45467 pimrecltpos 46689 |
| Copyright terms: Public domain | W3C validator |