MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfun Structured version   Visualization version   GIF version

Theorem nfun 4121
Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfun.1 𝑥𝐴
nfun.2 𝑥𝐵
Assertion
Ref Expression
nfun 𝑥(𝐴𝐵)

Proof of Theorem nfun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elun 4104 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
2 nfun.1 . . . . 5 𝑥𝐴
32nfcri 2883 . . . 4 𝑥 𝑦𝐴
4 nfun.2 . . . . 5 𝑥𝐵
54nfcri 2883 . . . 4 𝑥 𝑦𝐵
63, 5nfor 1904 . . 3 𝑥(𝑦𝐴𝑦𝐵)
71, 6nfxfr 1853 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
87nfci 2879 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wo 847  wcel 2109  wnfc 2876  cun 3901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-v 3438  df-un 3908
This theorem is referenced by:  nfsymdif  4208  csbun  4392  iunxdif3  5044  nfsuc  6381  nfsup  9341  nfdju  9803  iunconn  23313  nosupbnd2  27626  noinfbnd2  27641  ordtconnlem1  33891  esumsplit  34020  measvuni  34181  bnj958  34907  bnj1000  34908  bnj1408  35003  bnj1446  35012  bnj1447  35013  bnj1448  35014  bnj1466  35020  bnj1467  35021  rdgssun  37352  exrecfnlem  37353  poimirlem16  37616  poimirlem19  37619  pimxrneun  45467  pimrecltpos  46689
  Copyright terms: Public domain W3C validator