| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfun | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2141, ax-11 2157, ax-12 2177. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfun.1 | ⊢ Ⅎ𝑥𝐴 |
| nfun.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfun | ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 4128 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∪ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) | |
| 2 | nfun.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2890 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfun.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2890 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 6 | 3, 5 | nfor 1904 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵) |
| 7 | 1, 6 | nfxfr 1853 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∪ 𝐵) |
| 8 | 7 | nfci 2886 | 1 ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 ∈ wcel 2108 Ⅎwnfc 2883 ∪ cun 3924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-v 3461 df-un 3931 |
| This theorem is referenced by: nfsymdif 4232 csbun 4416 iunxdif3 5071 nfsuc 6426 nfsup 9463 nfdju 9921 iunconn 23366 nosupbnd2 27680 noinfbnd2 27695 ordtconnlem1 33955 esumsplit 34084 measvuni 34245 bnj958 34971 bnj1000 34972 bnj1408 35067 bnj1446 35076 bnj1447 35077 bnj1448 35078 bnj1466 35084 bnj1467 35085 rdgssun 37396 exrecfnlem 37397 poimirlem16 37660 poimirlem19 37663 pimxrneun 45515 pimrecltpos 46737 |
| Copyright terms: Public domain | W3C validator |