MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfun Structured version   Visualization version   GIF version

Theorem nfun 4136
Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfun.1 𝑥𝐴
nfun.2 𝑥𝐵
Assertion
Ref Expression
nfun 𝑥(𝐴𝐵)

Proof of Theorem nfun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elun 4119 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
2 nfun.1 . . . . 5 𝑥𝐴
32nfcri 2884 . . . 4 𝑥 𝑦𝐴
4 nfun.2 . . . . 5 𝑥𝐵
54nfcri 2884 . . . 4 𝑥 𝑦𝐵
63, 5nfor 1904 . . 3 𝑥(𝑦𝐴𝑦𝐵)
71, 6nfxfr 1853 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
87nfci 2880 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wo 847  wcel 2109  wnfc 2877  cun 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-v 3452  df-un 3922
This theorem is referenced by:  nfsymdif  4223  csbun  4407  iunxdif3  5062  nfsuc  6409  nfsup  9409  nfdju  9867  iunconn  23322  nosupbnd2  27635  noinfbnd2  27650  ordtconnlem1  33921  esumsplit  34050  measvuni  34211  bnj958  34937  bnj1000  34938  bnj1408  35033  bnj1446  35042  bnj1447  35043  bnj1448  35044  bnj1466  35050  bnj1467  35051  rdgssun  37373  exrecfnlem  37374  poimirlem16  37637  poimirlem19  37640  pimxrneun  45491  pimrecltpos  46713
  Copyright terms: Public domain W3C validator