MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfun Structured version   Visualization version   GIF version

Theorem nfun 4179
Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2138, ax-11 2154, ax-12 2174. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfun.1 𝑥𝐴
nfun.2 𝑥𝐵
Assertion
Ref Expression
nfun 𝑥(𝐴𝐵)

Proof of Theorem nfun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elun 4162 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
2 nfun.1 . . . . 5 𝑥𝐴
32nfcri 2894 . . . 4 𝑥 𝑦𝐴
4 nfun.2 . . . . 5 𝑥𝐵
54nfcri 2894 . . . 4 𝑥 𝑦𝐵
63, 5nfor 1901 . . 3 𝑥(𝑦𝐴𝑦𝐵)
71, 6nfxfr 1849 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
87nfci 2890 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wo 847  wcel 2105  wnfc 2887  cun 3960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1539  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-v 3479  df-un 3967
This theorem is referenced by:  nfsymdif  4262  csbun  4446  iunxdif3  5099  nfsuc  6457  nfsup  9488  nfdju  9944  iunconn  23451  nosupbnd2  27775  noinfbnd2  27790  ordtconnlem1  33884  esumsplit  34033  measvuni  34194  bnj958  34932  bnj1000  34933  bnj1408  35028  bnj1446  35037  bnj1447  35038  bnj1448  35039  bnj1466  35045  bnj1467  35046  rdgssun  37360  exrecfnlem  37361  poimirlem16  37622  poimirlem19  37625  pimxrneun  45438  pimrecltpos  46663
  Copyright terms: Public domain W3C validator