![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfun | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2138, ax-11 2154, ax-12 2174. (Revised by SN, 14-May-2025.) |
Ref | Expression |
---|---|
nfun.1 | ⊢ Ⅎ𝑥𝐴 |
nfun.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfun | ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4162 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∪ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) | |
2 | nfun.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfun.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
6 | 3, 5 | nfor 1901 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵) |
7 | 1, 6 | nfxfr 1849 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∪ 𝐵) |
8 | 7 | nfci 2890 | 1 ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 847 ∈ wcel 2105 Ⅎwnfc 2887 ∪ cun 3960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-v 3479 df-un 3967 |
This theorem is referenced by: nfsymdif 4262 csbun 4446 iunxdif3 5099 nfsuc 6457 nfsup 9488 nfdju 9944 iunconn 23451 nosupbnd2 27775 noinfbnd2 27790 ordtconnlem1 33884 esumsplit 34033 measvuni 34194 bnj958 34932 bnj1000 34933 bnj1408 35028 bnj1446 35037 bnj1447 35038 bnj1448 35039 bnj1466 35045 bnj1467 35046 rdgssun 37360 exrecfnlem 37361 poimirlem16 37622 poimirlem19 37625 pimxrneun 45438 pimrecltpos 46663 |
Copyright terms: Public domain | W3C validator |