MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfun Structured version   Visualization version   GIF version

Theorem nfun 4095
Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfun.1 𝑥𝐴
nfun.2 𝑥𝐵
Assertion
Ref Expression
nfun 𝑥(𝐴𝐵)

Proof of Theorem nfun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-un 3888 . 2 (𝐴𝐵) = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
2 nfun.1 . . . . 5 𝑥𝐴
32nfcri 2893 . . . 4 𝑥 𝑦𝐴
4 nfun.2 . . . . 5 𝑥𝐵
54nfcri 2893 . . . 4 𝑥 𝑦𝐵
63, 5nfor 1908 . . 3 𝑥(𝑦𝐴𝑦𝐵)
76nfab 2912 . 2 𝑥{𝑦 ∣ (𝑦𝐴𝑦𝐵)}
81, 7nfcxfr 2904 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wo 843  wcel 2108  {cab 2715  wnfc 2886  cun 3881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-un 3888
This theorem is referenced by:  nfsymdif  4177  csbun  4369  iunxdif3  5020  nfsuc  6322  nfsup  9140  nfdju  9596  iunconn  22487  ordtconnlem1  31776  esumsplit  31921  measvuni  32082  bnj958  32820  bnj1000  32821  bnj1408  32916  bnj1446  32925  bnj1447  32926  bnj1448  32927  bnj1466  32933  bnj1467  32934  nosupbnd2  33846  noinfbnd2  33861  rdgssun  35476  exrecfnlem  35477  poimirlem16  35720  poimirlem19  35723  pimrecltpos  44133
  Copyright terms: Public domain W3C validator