MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfun Structured version   Visualization version   GIF version

Theorem nfun 4150
Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2140, ax-11 2156, ax-12 2176. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfun.1 𝑥𝐴
nfun.2 𝑥𝐵
Assertion
Ref Expression
nfun 𝑥(𝐴𝐵)

Proof of Theorem nfun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elun 4133 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
2 nfun.1 . . . . 5 𝑥𝐴
32nfcri 2889 . . . 4 𝑥 𝑦𝐴
4 nfun.2 . . . . 5 𝑥𝐵
54nfcri 2889 . . . 4 𝑥 𝑦𝐵
63, 5nfor 1903 . . 3 𝑥(𝑦𝐴𝑦𝐵)
71, 6nfxfr 1852 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
87nfci 2885 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wo 847  wcel 2107  wnfc 2882  cun 3929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-v 3465  df-un 3936
This theorem is referenced by:  nfsymdif  4237  csbun  4421  iunxdif3  5075  nfsuc  6436  nfsup  9473  nfdju  9929  iunconn  23382  nosupbnd2  27697  noinfbnd2  27712  ordtconnlem1  33882  esumsplit  34013  measvuni  34174  bnj958  34913  bnj1000  34914  bnj1408  35009  bnj1446  35018  bnj1447  35019  bnj1448  35020  bnj1466  35026  bnj1467  35027  rdgssun  37338  exrecfnlem  37339  poimirlem16  37602  poimirlem19  37605  pimxrneun  45456  pimrecltpos  46680
  Copyright terms: Public domain W3C validator