![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfun | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2141, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.) |
Ref | Expression |
---|---|
nfun.1 | ⊢ Ⅎ𝑥𝐴 |
nfun.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfun | ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4176 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∪ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) | |
2 | nfun.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2900 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfun.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2900 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
6 | 3, 5 | nfor 1903 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵) |
7 | 1, 6 | nfxfr 1851 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∪ 𝐵) |
8 | 7 | nfci 2896 | 1 ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 846 ∈ wcel 2108 Ⅎwnfc 2893 ∪ cun 3974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-v 3490 df-un 3981 |
This theorem is referenced by: nfsymdif 4276 csbun 4464 iunxdif3 5118 nfsuc 6467 nfsup 9520 nfdju 9976 iunconn 23457 nosupbnd2 27779 noinfbnd2 27794 ordtconnlem1 33870 esumsplit 34017 measvuni 34178 bnj958 34916 bnj1000 34917 bnj1408 35012 bnj1446 35021 bnj1447 35022 bnj1448 35023 bnj1466 35029 bnj1467 35030 rdgssun 37344 exrecfnlem 37345 poimirlem16 37596 poimirlem19 37599 pimxrneun 45404 pimrecltpos 46629 |
Copyright terms: Public domain | W3C validator |