MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfun Structured version   Visualization version   GIF version

Theorem nfun 4193
Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2141, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfun.1 𝑥𝐴
nfun.2 𝑥𝐵
Assertion
Ref Expression
nfun 𝑥(𝐴𝐵)

Proof of Theorem nfun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elun 4176 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
2 nfun.1 . . . . 5 𝑥𝐴
32nfcri 2900 . . . 4 𝑥 𝑦𝐴
4 nfun.2 . . . . 5 𝑥𝐵
54nfcri 2900 . . . 4 𝑥 𝑦𝐵
63, 5nfor 1903 . . 3 𝑥(𝑦𝐴𝑦𝐵)
71, 6nfxfr 1851 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
87nfci 2896 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wo 846  wcel 2108  wnfc 2893  cun 3974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490  df-un 3981
This theorem is referenced by:  nfsymdif  4276  csbun  4464  iunxdif3  5118  nfsuc  6467  nfsup  9520  nfdju  9976  iunconn  23457  nosupbnd2  27779  noinfbnd2  27794  ordtconnlem1  33870  esumsplit  34017  measvuni  34178  bnj958  34916  bnj1000  34917  bnj1408  35012  bnj1446  35021  bnj1447  35022  bnj1448  35023  bnj1466  35029  bnj1467  35030  rdgssun  37344  exrecfnlem  37345  poimirlem16  37596  poimirlem19  37599  pimxrneun  45404  pimrecltpos  46629
  Copyright terms: Public domain W3C validator