Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfun | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfun.1 | ⊢ Ⅎ𝑥𝐴 |
nfun.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfun | ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-un 3892 | . 2 ⊢ (𝐴 ∪ 𝐵) = {𝑦 ∣ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)} | |
2 | nfun.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfun.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
6 | 3, 5 | nfor 1907 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵) |
7 | 6 | nfab 2913 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)} |
8 | 1, 7 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 844 ∈ wcel 2106 {cab 2715 Ⅎwnfc 2887 ∪ cun 3885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-un 3892 |
This theorem is referenced by: nfsymdif 4180 csbun 4372 iunxdif3 5024 nfsuc 6337 nfsup 9210 nfdju 9665 iunconn 22579 ordtconnlem1 31874 esumsplit 32021 measvuni 32182 bnj958 32920 bnj1000 32921 bnj1408 33016 bnj1446 33025 bnj1447 33026 bnj1448 33027 bnj1466 33033 bnj1467 33034 nosupbnd2 33919 noinfbnd2 33934 rdgssun 35549 exrecfnlem 35550 poimirlem16 35793 poimirlem19 35796 pimrecltpos 44245 |
Copyright terms: Public domain | W3C validator |