MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfun Structured version   Visualization version   GIF version

Theorem nfun 4145
Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2141, ax-11 2157, ax-12 2177. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfun.1 𝑥𝐴
nfun.2 𝑥𝐵
Assertion
Ref Expression
nfun 𝑥(𝐴𝐵)

Proof of Theorem nfun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elun 4128 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
2 nfun.1 . . . . 5 𝑥𝐴
32nfcri 2890 . . . 4 𝑥 𝑦𝐴
4 nfun.2 . . . . 5 𝑥𝐵
54nfcri 2890 . . . 4 𝑥 𝑦𝐵
63, 5nfor 1904 . . 3 𝑥(𝑦𝐴𝑦𝐵)
71, 6nfxfr 1853 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
87nfci 2886 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wo 847  wcel 2108  wnfc 2883  cun 3924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-v 3461  df-un 3931
This theorem is referenced by:  nfsymdif  4232  csbun  4416  iunxdif3  5071  nfsuc  6426  nfsup  9463  nfdju  9921  iunconn  23366  nosupbnd2  27680  noinfbnd2  27695  ordtconnlem1  33955  esumsplit  34084  measvuni  34245  bnj958  34971  bnj1000  34972  bnj1408  35067  bnj1446  35076  bnj1447  35077  bnj1448  35078  bnj1466  35084  bnj1467  35085  rdgssun  37396  exrecfnlem  37397  poimirlem16  37660  poimirlem19  37663  pimxrneun  45515  pimrecltpos  46737
  Copyright terms: Public domain W3C validator