MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfun Structured version   Visualization version   GIF version

Theorem nfun 4099
Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfun.1 𝑥𝐴
nfun.2 𝑥𝐵
Assertion
Ref Expression
nfun 𝑥(𝐴𝐵)

Proof of Theorem nfun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-un 3892 . 2 (𝐴𝐵) = {𝑦 ∣ (𝑦𝐴𝑦𝐵)}
2 nfun.1 . . . . 5 𝑥𝐴
32nfcri 2894 . . . 4 𝑥 𝑦𝐴
4 nfun.2 . . . . 5 𝑥𝐵
54nfcri 2894 . . . 4 𝑥 𝑦𝐵
63, 5nfor 1907 . . 3 𝑥(𝑦𝐴𝑦𝐵)
76nfab 2913 . 2 𝑥{𝑦 ∣ (𝑦𝐴𝑦𝐵)}
81, 7nfcxfr 2905 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wo 844  wcel 2106  {cab 2715  wnfc 2887  cun 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-un 3892
This theorem is referenced by:  nfsymdif  4180  csbun  4372  iunxdif3  5024  nfsuc  6337  nfsup  9210  nfdju  9665  iunconn  22579  ordtconnlem1  31874  esumsplit  32021  measvuni  32182  bnj958  32920  bnj1000  32921  bnj1408  33016  bnj1446  33025  bnj1447  33026  bnj1448  33027  bnj1466  33033  bnj1467  33034  nosupbnd2  33919  noinfbnd2  33934  rdgssun  35549  exrecfnlem  35550  poimirlem16  35793  poimirlem19  35796  pimrecltpos  44245
  Copyright terms: Public domain W3C validator