| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfun | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2140, ax-11 2156, ax-12 2176. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfun.1 | ⊢ Ⅎ𝑥𝐴 |
| nfun.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfun | ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 4133 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∪ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) | |
| 2 | nfun.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2889 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfun.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2889 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 6 | 3, 5 | nfor 1903 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵) |
| 7 | 1, 6 | nfxfr 1852 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∪ 𝐵) |
| 8 | 7 | nfci 2885 | 1 ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 ∈ wcel 2107 Ⅎwnfc 2882 ∪ cun 3929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-v 3465 df-un 3936 |
| This theorem is referenced by: nfsymdif 4237 csbun 4421 iunxdif3 5075 nfsuc 6436 nfsup 9473 nfdju 9929 iunconn 23382 nosupbnd2 27697 noinfbnd2 27712 ordtconnlem1 33882 esumsplit 34013 measvuni 34174 bnj958 34913 bnj1000 34914 bnj1408 35009 bnj1446 35018 bnj1447 35019 bnj1448 35020 bnj1466 35026 bnj1467 35027 rdgssun 37338 exrecfnlem 37339 poimirlem16 37602 poimirlem19 37605 pimxrneun 45456 pimrecltpos 46680 |
| Copyright terms: Public domain | W3C validator |