| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfun | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfun.1 | ⊢ Ⅎ𝑥𝐴 |
| nfun.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfun | ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 4112 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∪ 𝐵) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵)) | |
| 2 | nfun.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfun.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 6 | 3, 5 | nfor 1904 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∨ 𝑦 ∈ 𝐵) |
| 7 | 1, 6 | nfxfr 1853 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∪ 𝐵) |
| 8 | 7 | nfci 2879 | 1 ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 ∈ wcel 2109 Ⅎwnfc 2876 ∪ cun 3909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3446 df-un 3916 |
| This theorem is referenced by: nfsymdif 4216 csbun 4400 iunxdif3 5054 nfsuc 6394 nfsup 9378 nfdju 9836 iunconn 23348 nosupbnd2 27661 noinfbnd2 27676 ordtconnlem1 33907 esumsplit 34036 measvuni 34197 bnj958 34923 bnj1000 34924 bnj1408 35019 bnj1446 35028 bnj1447 35029 bnj1448 35030 bnj1466 35036 bnj1467 35037 rdgssun 37359 exrecfnlem 37360 poimirlem16 37623 poimirlem19 37626 pimxrneun 45477 pimrecltpos 46699 |
| Copyright terms: Public domain | W3C validator |