MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unass Structured version   Visualization version   GIF version

Theorem unass 4166
Description: Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
unass ((𝐴𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵𝐶))

Proof of Theorem unass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elun 4148 . . 3 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
2 elun 4148 . . . 4 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
32orbi2i 910 . . 3 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵𝑥𝐶)))
4 elun 4148 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
54orbi1i 911 . . . 4 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∨ 𝑥𝐶))
6 orass 919 . . . 4 (((𝑥𝐴𝑥𝐵) ∨ 𝑥𝐶) ↔ (𝑥𝐴 ∨ (𝑥𝐵𝑥𝐶)))
75, 6bitr2i 276 . . 3 ((𝑥𝐴 ∨ (𝑥𝐵𝑥𝐶)) ↔ (𝑥 ∈ (𝐴𝐵) ∨ 𝑥𝐶))
81, 3, 73bitrri 298 . 2 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥𝐶) ↔ 𝑥 ∈ (𝐴 ∪ (𝐵𝐶)))
98uneqri 4151 1 ((𝐴𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wo 844   = wceq 1540  wcel 2105  cun 3946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-un 3953
This theorem is referenced by:  un12  4167  un23  4168  un4  4169  dfif5  4544  qdass  4757  qdassr  4758  ssunpr  4835  oarec  8565  unfi  9175  domunfican  9323  djuassen  10176  prunioo  13463  ioojoin  13465  fzosplitpr  13746  s4prop  14866  lcmfun  16587  phlstr  17296  prdsvalstr  17403  mreexexlem2d  17594  mreexexlem4d  17596  pwmnd  18855  ordtbas  22917  reconnlem1  24563  lhop  25769  plyun0  25947  addsasslem2  27727  ex-un  29945  ex-pw  29950  indifundif  32030  subfacp1lem1  34469  poimirlem3  36795  poimirlem4  36796  poimirlem16  36808  poimirlem19  36811  dfrcl2  42728  corcltrcl  42793  cotrclrcl  42796  frege131d  42818
  Copyright terms: Public domain W3C validator