![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unass | Structured version Visualization version GIF version |
Description: Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
unass | ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4176 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∪ 𝐶))) | |
2 | elun 4176 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
3 | 2 | orbi2i 911 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
4 | elun 4176 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
5 | 4 | orbi1i 912 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∨ 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∨ 𝑥 ∈ 𝐶)) |
6 | orass 920 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∨ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) | |
7 | 5, 6 | bitr2i 276 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ∨ 𝑥 ∈ 𝐶)) |
8 | 1, 3, 7 | 3bitrri 298 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∨ 𝑥 ∈ 𝐶) ↔ 𝑥 ∈ (𝐴 ∪ (𝐵 ∪ 𝐶))) |
9 | 8 | uneqri 4179 | 1 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 |
This theorem is referenced by: un12 4196 un23 4197 un4 4198 dfif5 4564 qdass 4778 qdassr 4779 ssunpr 4859 oarec 8618 unfi 9238 domunfican 9389 djuassen 10248 prunioo 13541 ioojoin 13543 fzosplitpr 13826 s4prop 14959 lcmfun 16692 phlstr 17405 prdsvalstr 17512 mreexexlem2d 17703 mreexexlem4d 17705 pwmnd 18972 ordtbas 23221 reconnlem1 24867 lhop 26075 plyun0 26256 addsasslem2 28055 ex-un 30456 ex-pw 30461 indifundif 32554 subfacp1lem1 35147 poimirlem3 37583 poimirlem4 37584 poimirlem16 37596 poimirlem19 37599 dfrcl2 43636 corcltrcl 43701 cotrclrcl 43704 frege131d 43726 usgrexmpl1edg 47839 usgrexmpl2edg 47844 |
Copyright terms: Public domain | W3C validator |