MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unass Structured version   Visualization version   GIF version

Theorem unass 4119
Description: Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
unass ((𝐴𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵𝐶))

Proof of Theorem unass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elun 4100 . . 3 (𝑥 ∈ (𝐴 ∪ (𝐵𝐶)) ↔ (𝑥𝐴𝑥 ∈ (𝐵𝐶)))
2 elun 4100 . . . 4 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
32orbi2i 912 . . 3 ((𝑥𝐴𝑥 ∈ (𝐵𝐶)) ↔ (𝑥𝐴 ∨ (𝑥𝐵𝑥𝐶)))
4 elun 4100 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
54orbi1i 913 . . . 4 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥𝐶) ↔ ((𝑥𝐴𝑥𝐵) ∨ 𝑥𝐶))
6 orass 921 . . . 4 (((𝑥𝐴𝑥𝐵) ∨ 𝑥𝐶) ↔ (𝑥𝐴 ∨ (𝑥𝐵𝑥𝐶)))
75, 6bitr2i 276 . . 3 ((𝑥𝐴 ∨ (𝑥𝐵𝑥𝐶)) ↔ (𝑥 ∈ (𝐴𝐵) ∨ 𝑥𝐶))
81, 3, 73bitrri 298 . 2 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥𝐶) ↔ 𝑥 ∈ (𝐴 ∪ (𝐵𝐶)))
98uneqri 4103 1 ((𝐴𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1541  wcel 2111  cun 3895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902
This theorem is referenced by:  un12  4120  un23  4121  un4  4122  dfif5  4489  qdass  4703  qdassr  4704  ssunpr  4783  oarec  8477  unfi  9080  domunfican  9206  djuassen  10070  prunioo  13381  ioojoin  13383  fzosplitpr  13677  s4prop  14817  lcmfun  16556  phlstr  17250  prdsvalstr  17356  mreexexlem2d  17551  mreexexlem4d  17553  pwmnd  18845  ordtbas  23107  reconnlem1  24742  lhop  25948  plyun0  26129  addsasslem2  27947  ex-un  30404  ex-pw  30409  indifundif  32504  subfacp1lem1  35223  poimirlem3  37662  poimirlem4  37663  poimirlem16  37675  poimirlem19  37678  dfrcl2  43766  corcltrcl  43831  cotrclrcl  43834  frege131d  43856  usgrexmpl1edg  48123  usgrexmpl2edg  48128
  Copyright terms: Public domain W3C validator