| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unass | Structured version Visualization version GIF version | ||
| Description: Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| unass | ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 4100 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∪ 𝐶))) | |
| 2 | elun 4100 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
| 3 | 2 | orbi2i 912 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
| 4 | elun 4100 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 5 | 4 | orbi1i 913 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∨ 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∨ 𝑥 ∈ 𝐶)) |
| 6 | orass 921 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∨ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) | |
| 7 | 5, 6 | bitr2i 276 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ∨ 𝑥 ∈ 𝐶)) |
| 8 | 1, 3, 7 | 3bitrri 298 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∨ 𝑥 ∈ 𝐶) ↔ 𝑥 ∈ (𝐴 ∪ (𝐵 ∪ 𝐶))) |
| 9 | 8 | uneqri 4103 | 1 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 |
| This theorem is referenced by: un12 4120 un23 4121 un4 4122 dfif5 4489 qdass 4703 qdassr 4704 ssunpr 4783 oarec 8477 unfi 9080 domunfican 9206 djuassen 10070 prunioo 13381 ioojoin 13383 fzosplitpr 13677 s4prop 14817 lcmfun 16556 phlstr 17250 prdsvalstr 17356 mreexexlem2d 17551 mreexexlem4d 17553 pwmnd 18845 ordtbas 23107 reconnlem1 24742 lhop 25948 plyun0 26129 addsasslem2 27947 ex-un 30404 ex-pw 30409 indifundif 32504 subfacp1lem1 35223 poimirlem3 37662 poimirlem4 37663 poimirlem16 37675 poimirlem19 37678 dfrcl2 43766 corcltrcl 43831 cotrclrcl 43834 frege131d 43856 usgrexmpl1edg 48123 usgrexmpl2edg 48128 |
| Copyright terms: Public domain | W3C validator |