| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unass | Structured version Visualization version GIF version | ||
| Description: Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| unass | ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 4104 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∪ 𝐶))) | |
| 2 | elun 4104 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
| 3 | 2 | orbi2i 912 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
| 4 | elun 4104 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 5 | 4 | orbi1i 913 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∨ 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∨ 𝑥 ∈ 𝐶)) |
| 6 | orass 921 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∨ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) | |
| 7 | 5, 6 | bitr2i 276 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ∨ 𝑥 ∈ 𝐶)) |
| 8 | 1, 3, 7 | 3bitrri 298 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∨ 𝑥 ∈ 𝐶) ↔ 𝑥 ∈ (𝐴 ∪ (𝐵 ∪ 𝐶))) |
| 9 | 8 | uneqri 4107 | 1 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 |
| This theorem is referenced by: un12 4124 un23 4125 un4 4126 dfif5 4493 qdass 4705 qdassr 4706 ssunpr 4785 oarec 8480 unfi 9085 domunfican 9211 djuassen 10073 prunioo 13384 ioojoin 13386 fzosplitpr 13679 s4prop 14817 lcmfun 16556 phlstr 17250 prdsvalstr 17356 mreexexlem2d 17551 mreexexlem4d 17553 pwmnd 18811 ordtbas 23077 reconnlem1 24713 lhop 25919 plyun0 26100 addsasslem2 27916 ex-un 30368 ex-pw 30373 indifundif 32468 subfacp1lem1 35162 poimirlem3 37613 poimirlem4 37614 poimirlem16 37626 poimirlem19 37629 dfrcl2 43657 corcltrcl 43722 cotrclrcl 43725 frege131d 43747 usgrexmpl1edg 48018 usgrexmpl2edg 48023 |
| Copyright terms: Public domain | W3C validator |