![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unass | Structured version Visualization version GIF version |
Description: Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
unass | ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4148 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∪ 𝐶))) | |
2 | elun 4148 | . . . 4 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
3 | 2 | orbi2i 910 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∪ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
4 | elun 4148 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
5 | 4 | orbi1i 911 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∨ 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∨ 𝑥 ∈ 𝐶)) |
6 | orass 919 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∨ 𝑥 ∈ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) | |
7 | 5, 6 | bitr2i 276 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) ↔ (𝑥 ∈ (𝐴 ∪ 𝐵) ∨ 𝑥 ∈ 𝐶)) |
8 | 1, 3, 7 | 3bitrri 298 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∨ 𝑥 ∈ 𝐶) ↔ 𝑥 ∈ (𝐴 ∪ (𝐵 ∪ 𝐶))) |
9 | 8 | uneqri 4151 | 1 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 844 = wceq 1540 ∈ wcel 2105 ∪ cun 3946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-un 3953 |
This theorem is referenced by: un12 4167 un23 4168 un4 4169 dfif5 4544 qdass 4757 qdassr 4758 ssunpr 4835 oarec 8565 unfi 9175 domunfican 9323 djuassen 10176 prunioo 13463 ioojoin 13465 fzosplitpr 13746 s4prop 14866 lcmfun 16587 phlstr 17296 prdsvalstr 17403 mreexexlem2d 17594 mreexexlem4d 17596 pwmnd 18855 ordtbas 22917 reconnlem1 24563 lhop 25769 plyun0 25947 addsasslem2 27727 ex-un 29945 ex-pw 29950 indifundif 32030 subfacp1lem1 34469 poimirlem3 36795 poimirlem4 36796 poimirlem16 36808 poimirlem19 36811 dfrcl2 42728 corcltrcl 42793 cotrclrcl 42796 frege131d 42818 |
Copyright terms: Public domain | W3C validator |