MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0xnn0 Structured version   Visualization version   GIF version

Theorem nn0xnn0 12239
Description: A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0xnn0 (𝐴 ∈ ℕ0𝐴 ∈ ℕ0*)

Proof of Theorem nn0xnn0
StepHypRef Expression
1 nn0ssxnn0 12238 . 2 0 ⊆ ℕ0*
21sseli 3913 1 (𝐴 ∈ ℕ0𝐴 ∈ ℕ0*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  0cn0 12163  0*cxnn0 12235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-in 3890  df-ss 3900  df-xnn0 12236
This theorem is referenced by:  xnn0xadd0  12910  wlk1ewlk  27909  frgrregorufrg  28591  usgrcyclgt2v  32993
  Copyright terms: Public domain W3C validator