![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0xnn0 | Structured version Visualization version GIF version |
Description: A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
nn0xnn0 | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℕ0*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssxnn0 12628 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
2 | 1 | sseli 4004 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℕ0*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ℕ0cn0 12553 ℕ0*cxnn0 12625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-xnn0 12626 |
This theorem is referenced by: xnn0xadd0 13309 wlk1ewlk 29676 frgrregorufrg 30358 usgrcyclgt2v 35099 |
Copyright terms: Public domain | W3C validator |