MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0xnn0 Structured version   Visualization version   GIF version

Theorem nn0xnn0 12309
Description: A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0xnn0 (𝐴 ∈ ℕ0𝐴 ∈ ℕ0*)

Proof of Theorem nn0xnn0
StepHypRef Expression
1 nn0ssxnn0 12308 . 2 0 ⊆ ℕ0*
21sseli 3917 1 (𝐴 ∈ ℕ0𝐴 ∈ ℕ0*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  0cn0 12233  0*cxnn0 12305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-in 3894  df-ss 3904  df-xnn0 12306
This theorem is referenced by:  xnn0xadd0  12981  wlk1ewlk  28007  frgrregorufrg  28690  usgrcyclgt2v  33093
  Copyright terms: Public domain W3C validator