MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0xnn0 Structured version   Visualization version   GIF version

Theorem nn0xnn0 12555
Description: A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
nn0xnn0 (𝐴 ∈ ℕ0𝐴 ∈ ℕ0*)

Proof of Theorem nn0xnn0
StepHypRef Expression
1 nn0ssxnn0 12554 . 2 0 ⊆ ℕ0*
21sseli 3978 1 (𝐴 ∈ ℕ0𝐴 ∈ ℕ0*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  0cn0 12479  0*cxnn0 12551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-un 3953  df-in 3955  df-ss 3965  df-xnn0 12552
This theorem is referenced by:  xnn0xadd0  13233  wlk1ewlk  29331  frgrregorufrg  30013  usgrcyclgt2v  34587
  Copyright terms: Public domain W3C validator