| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0xnn0 | Structured version Visualization version GIF version | ||
| Description: A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| nn0xnn0 | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℕ0*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssxnn0 12468 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
| 2 | 1 | sseli 3926 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℕ0*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ℕ0cn0 12392 ℕ0*cxnn0 12465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 df-xnn0 12466 |
| This theorem is referenced by: xnn0xadd0 13153 wlk1ewlk 29639 frgrregorufrg 30327 usgrcyclgt2v 35247 |
| Copyright terms: Public domain | W3C validator |