| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0xnn0 | Structured version Visualization version GIF version | ||
| Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| 0xnn0 | ⊢ 0 ∈ ℕ0* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssxnn0 12452 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
| 2 | 0nn0 12391 | . 2 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3926 | 1 ⊢ 0 ∈ ℕ0* |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 0cc0 11001 ℕ0cn0 12376 ℕ0*cxnn0 12449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-mulcl 11063 ax-i2m1 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 df-sn 4572 df-n0 12377 df-xnn0 12450 |
| This theorem is referenced by: 0edg0rgr 29546 rgrusgrprc 29563 rusgrprc 29564 rgrprcx 29566 |
| Copyright terms: Public domain | W3C validator |