MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0xnn0 Structured version   Visualization version   GIF version

Theorem 0xnn0 12549
Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
0xnn0 0 ∈ ℕ0*

Proof of Theorem 0xnn0
StepHypRef Expression
1 nn0ssxnn0 12546 . 2 0 ⊆ ℕ0*
2 0nn0 12486 . 2 0 ∈ ℕ0
31, 2sselii 3972 1 0 ∈ ℕ0*
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  0cc0 11107  0cn0 12471  0*cxnn0 12543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-mulcl 11169  ax-i2m1 11175
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-un 3946  df-in 3948  df-ss 3958  df-sn 4622  df-n0 12472  df-xnn0 12544
This theorem is referenced by:  0edg0rgr  29323  rgrusgrprc  29340  rusgrprc  29341  rgrprcx  29343
  Copyright terms: Public domain W3C validator