![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0xnn0 | Structured version Visualization version GIF version |
Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
0xnn0 | ⊢ 0 ∈ ℕ0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssxnn0 12609 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
2 | 0nn0 12548 | . 2 ⊢ 0 ∈ ℕ0 | |
3 | 1, 2 | sselii 3995 | 1 ⊢ 0 ∈ ℕ0* |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 0cc0 11162 ℕ0cn0 12533 ℕ0*cxnn0 12606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-mulcl 11224 ax-i2m1 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3483 df-un 3971 df-ss 3983 df-sn 4635 df-n0 12534 df-xnn0 12607 |
This theorem is referenced by: 0edg0rgr 29616 rgrusgrprc 29633 rusgrprc 29634 rgrprcx 29636 |
Copyright terms: Public domain | W3C validator |