MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0xnn0 Structured version   Visualization version   GIF version

Theorem 0xnn0 12612
Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
0xnn0 0 ∈ ℕ0*

Proof of Theorem 0xnn0
StepHypRef Expression
1 nn0ssxnn0 12609 . 2 0 ⊆ ℕ0*
2 0nn0 12548 . 2 0 ∈ ℕ0
31, 2sselii 3995 1 0 ∈ ℕ0*
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  0cc0 11162  0cn0 12533  0*cxnn0 12606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-mulcl 11224  ax-i2m1 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3483  df-un 3971  df-ss 3983  df-sn 4635  df-n0 12534  df-xnn0 12607
This theorem is referenced by:  0edg0rgr  29616  rgrusgrprc  29633  rusgrprc  29634  rgrprcx  29636
  Copyright terms: Public domain W3C validator