| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0xnn0 | Structured version Visualization version GIF version | ||
| Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| 0xnn0 | ⊢ 0 ∈ ℕ0* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssxnn0 12468 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
| 2 | 0nn0 12407 | . 2 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3927 | 1 ⊢ 0 ∈ ℕ0* |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 0cc0 11017 ℕ0cn0 12392 ℕ0*cxnn0 12465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-mulcl 11079 ax-i2m1 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 df-sn 4578 df-n0 12393 df-xnn0 12466 |
| This theorem is referenced by: 0edg0rgr 29572 rgrusgrprc 29589 rusgrprc 29590 rgrprcx 29592 |
| Copyright terms: Public domain | W3C validator |