MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0xnn0 Structured version   Visualization version   GIF version

Theorem 0xnn0 12546
Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
0xnn0 0 ∈ ℕ0*

Proof of Theorem 0xnn0
StepHypRef Expression
1 nn0ssxnn0 12543 . 2 0 ⊆ ℕ0*
2 0nn0 12483 . 2 0 ∈ ℕ0
31, 2sselii 3978 1 0 ∈ ℕ0*
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  0cc0 11106  0cn0 12468  0*cxnn0 12540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-mulcl 11168  ax-i2m1 11174
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-un 3952  df-in 3954  df-ss 3964  df-sn 4628  df-n0 12469  df-xnn0 12541
This theorem is referenced by:  0edg0rgr  28818  rgrusgrprc  28835  rusgrprc  28836  rgrprcx  28838
  Copyright terms: Public domain W3C validator