![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0xnn0 | Structured version Visualization version GIF version |
Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
0xnn0 | ⊢ 0 ∈ ℕ0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssxnn0 12630 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
2 | 0nn0 12570 | . 2 ⊢ 0 ∈ ℕ0 | |
3 | 1, 2 | sselii 4005 | 1 ⊢ 0 ∈ ℕ0* |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 0cc0 11186 ℕ0cn0 12555 ℕ0*cxnn0 12627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-mulcl 11248 ax-i2m1 11254 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-n0 12556 df-xnn0 12628 |
This theorem is referenced by: 0edg0rgr 29610 rgrusgrprc 29627 rusgrprc 29628 rgrprcx 29630 |
Copyright terms: Public domain | W3C validator |