MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0xnn0 Structured version   Visualization version   GIF version

Theorem 0xnn0 12588
Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
0xnn0 0 ∈ ℕ0*

Proof of Theorem 0xnn0
StepHypRef Expression
1 nn0ssxnn0 12585 . 2 0 ⊆ ℕ0*
2 0nn0 12524 . 2 0 ∈ ℕ0
31, 2sselii 3960 1 0 ∈ ℕ0*
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  0cc0 11137  0cn0 12509  0*cxnn0 12582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-mulcl 11199  ax-i2m1 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3465  df-un 3936  df-ss 3948  df-sn 4607  df-n0 12510  df-xnn0 12583
This theorem is referenced by:  0edg0rgr  29518  rgrusgrprc  29535  rusgrprc  29536  rgrprcx  29538
  Copyright terms: Public domain W3C validator