| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0xnn0 | Structured version Visualization version GIF version | ||
| Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| 0xnn0 | ⊢ 0 ∈ ℕ0* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssxnn0 12525 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
| 2 | 0nn0 12464 | . 2 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3946 | 1 ⊢ 0 ∈ ℕ0* |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 0cc0 11075 ℕ0cn0 12449 ℕ0*cxnn0 12522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-i2m1 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-sn 4593 df-n0 12450 df-xnn0 12523 |
| This theorem is referenced by: 0edg0rgr 29507 rgrusgrprc 29524 rusgrprc 29525 rgrprcx 29527 |
| Copyright terms: Public domain | W3C validator |