| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0xnn0 | Structured version Visualization version GIF version | ||
| Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| 0xnn0 | ⊢ 0 ∈ ℕ0* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssxnn0 12585 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
| 2 | 0nn0 12524 | . 2 ⊢ 0 ∈ ℕ0 | |
| 3 | 1, 2 | sselii 3960 | 1 ⊢ 0 ∈ ℕ0* |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 0cc0 11137 ℕ0cn0 12509 ℕ0*cxnn0 12582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-mulcl 11199 ax-i2m1 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-un 3936 df-ss 3948 df-sn 4607 df-n0 12510 df-xnn0 12583 |
| This theorem is referenced by: 0edg0rgr 29518 rgrusgrprc 29535 rusgrprc 29536 rgrprcx 29538 |
| Copyright terms: Public domain | W3C validator |