MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0xnn0 Structured version   Visualization version   GIF version

Theorem 0xnn0 11965
Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
0xnn0 0 ∈ ℕ0*

Proof of Theorem 0xnn0
StepHypRef Expression
1 nn0ssxnn0 11962 . 2 0 ⊆ ℕ0*
2 0nn0 11904 . 2 0 ∈ ℕ0
31, 2sselii 3962 1 0 ∈ ℕ0*
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  0cc0 10529  0cn0 11889  0*cxnn0 11959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-mulcl 10591  ax-i2m1 10597
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-v 3495  df-un 3939  df-in 3941  df-ss 3950  df-sn 4560  df-n0 11890  df-xnn0 11960
This theorem is referenced by:  0edg0rgr  27346  rgrusgrprc  27363  rusgrprc  27364  rgrprcx  27366
  Copyright terms: Public domain W3C validator