MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0xnn0d Structured version   Visualization version   GIF version

Theorem nn0xnn0d 12634
Description: A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.)
Hypothesis
Ref Expression
nn0xnn0d.1 (𝜑𝐴 ∈ ℕ0)
Assertion
Ref Expression
nn0xnn0d (𝜑𝐴 ∈ ℕ0*)

Proof of Theorem nn0xnn0d
StepHypRef Expression
1 nn0ssxnn0 12628 . 2 0 ⊆ ℕ0*
2 nn0xnn0d.1 . 2 (𝜑𝐴 ∈ ℕ0)
31, 2sselid 4006 1 (𝜑𝐴 ∈ ℕ0*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  0cn0 12553  0*cxnn0 12625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-ss 3993  df-xnn0 12626
This theorem is referenced by:  xnn0xaddcl  13297  pcxnn0cl  16907  fusgrn0eqdrusgr  29606  cusgrrusgr  29617
  Copyright terms: Public domain W3C validator