Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0xnn0d | Structured version Visualization version GIF version |
Description: A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
nn0xnn0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Ref | Expression |
---|---|
nn0xnn0d | ⊢ (𝜑 → 𝐴 ∈ ℕ0*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssxnn0 12002 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
2 | nn0xnn0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
3 | 1, 2 | sseldi 3891 | 1 ⊢ (𝜑 → 𝐴 ∈ ℕ0*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 ℕ0cn0 11927 ℕ0*cxnn0 11999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-v 3412 df-un 3864 df-in 3866 df-ss 3876 df-xnn0 12000 |
This theorem is referenced by: xnn0xaddcl 12662 fusgrn0eqdrusgr 27452 cusgrrusgr 27463 |
Copyright terms: Public domain | W3C validator |