MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0xnn0d Structured version   Visualization version   GIF version

Theorem nn0xnn0d 12549
Description: A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.)
Hypothesis
Ref Expression
nn0xnn0d.1 (𝜑𝐴 ∈ ℕ0)
Assertion
Ref Expression
nn0xnn0d (𝜑𝐴 ∈ ℕ0*)

Proof of Theorem nn0xnn0d
StepHypRef Expression
1 nn0ssxnn0 12543 . 2 0 ⊆ ℕ0*
2 nn0xnn0d.1 . 2 (𝜑𝐴 ∈ ℕ0)
31, 2sselid 3972 1 (𝜑𝐴 ∈ ℕ0*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  0cn0 12468  0*cxnn0 12540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-un 3945  df-in 3947  df-ss 3957  df-xnn0 12541
This theorem is referenced by:  xnn0xaddcl  13210  pcxnn0cl  16791  fusgrn0eqdrusgr  29262  cusgrrusgr  29273
  Copyright terms: Public domain W3C validator