| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0xnn0d | Structured version Visualization version GIF version | ||
| Description: A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| nn0xnn0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| nn0xnn0d | ⊢ (𝜑 → 𝐴 ∈ ℕ0*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssxnn0 12577 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
| 2 | nn0xnn0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
| 3 | 1, 2 | sselid 3956 | 1 ⊢ (𝜑 → 𝐴 ∈ ℕ0*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ℕ0cn0 12501 ℕ0*cxnn0 12574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-xnn0 12575 |
| This theorem is referenced by: xnn0xaddcl 13251 pcxnn0cl 16880 fusgrn0eqdrusgr 29550 cusgrrusgr 29561 |
| Copyright terms: Public domain | W3C validator |