![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0xnn0d | Structured version Visualization version GIF version |
Description: A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
nn0xnn0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Ref | Expression |
---|---|
nn0xnn0d | ⊢ (𝜑 → 𝐴 ∈ ℕ0*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssxnn0 11781 | . 2 ⊢ ℕ0 ⊆ ℕ0* | |
2 | nn0xnn0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
3 | 1, 2 | sseldi 3851 | 1 ⊢ (𝜑 → 𝐴 ∈ ℕ0*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2051 ℕ0cn0 11706 ℕ0*cxnn0 11778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-v 3412 df-un 3829 df-in 3831 df-ss 3838 df-xnn0 11779 |
This theorem is referenced by: xnn0xaddcl 12444 fusgrn0eqdrusgr 27071 cusgrrusgr 27082 |
Copyright terms: Public domain | W3C validator |