Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0xnn0d Structured version   Visualization version   GIF version

Theorem nn0xnn0d 12008
 Description: A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.)
Hypothesis
Ref Expression
nn0xnn0d.1 (𝜑𝐴 ∈ ℕ0)
Assertion
Ref Expression
nn0xnn0d (𝜑𝐴 ∈ ℕ0*)

Proof of Theorem nn0xnn0d
StepHypRef Expression
1 nn0ssxnn0 12002 . 2 0 ⊆ ℕ0*
2 nn0xnn0d.1 . 2 (𝜑𝐴 ∈ ℕ0)
31, 2sseldi 3891 1 (𝜑𝐴 ∈ ℕ0*)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2112  ℕ0cn0 11927  ℕ0*cxnn0 11999 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2730 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-tru 1542  df-ex 1783  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-v 3412  df-un 3864  df-in 3866  df-ss 3876  df-xnn0 12000 This theorem is referenced by:  xnn0xaddcl  12662  fusgrn0eqdrusgr  27452  cusgrrusgr  27463
 Copyright terms: Public domain W3C validator