| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eln0zs | Structured version Visualization version GIF version | ||
| Description: Non-negative surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025.) |
| Ref | Expression |
|---|---|
| eln0zs | ⊢ (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0zs 28314 | . . 3 ⊢ (𝑁 ∈ ℕ0s → 𝑁 ∈ ℤs) | |
| 2 | n0sge0 28267 | . . 3 ⊢ (𝑁 ∈ ℕ0s → 0s ≤s 𝑁) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝑁 ∈ ℕ0s → (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁)) |
| 4 | elzs 28309 | . . . 4 ⊢ (𝑁 ∈ ℤs ↔ ∃𝑥 ∈ ℕs ∃𝑦 ∈ ℕs 𝑁 = (𝑥 -s 𝑦)) | |
| 5 | nnsno 28254 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℕs → 𝑥 ∈ No ) | |
| 6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℕs ∧ 𝑦 ∈ ℕs) → 𝑥 ∈ No ) |
| 7 | nnsno 28254 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕs → 𝑦 ∈ No ) | |
| 8 | 7 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℕs ∧ 𝑦 ∈ ℕs) → 𝑦 ∈ No ) |
| 9 | 6, 8 | subsge0d 28040 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕs ∧ 𝑦 ∈ ℕs) → ( 0s ≤s (𝑥 -s 𝑦) ↔ 𝑦 ≤s 𝑥)) |
| 10 | nnn0s 28257 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕs → 𝑦 ∈ ℕ0s) | |
| 11 | nnn0s 28257 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕs → 𝑥 ∈ ℕ0s) | |
| 12 | n0subs 28290 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℕ0s) → (𝑦 ≤s 𝑥 ↔ (𝑥 -s 𝑦) ∈ ℕ0s)) | |
| 13 | 10, 11, 12 | syl2anr 597 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕs ∧ 𝑦 ∈ ℕs) → (𝑦 ≤s 𝑥 ↔ (𝑥 -s 𝑦) ∈ ℕ0s)) |
| 14 | 9, 13 | bitrd 279 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕs ∧ 𝑦 ∈ ℕs) → ( 0s ≤s (𝑥 -s 𝑦) ↔ (𝑥 -s 𝑦) ∈ ℕ0s)) |
| 15 | 14 | biimpd 229 | . . . . . 6 ⊢ ((𝑥 ∈ ℕs ∧ 𝑦 ∈ ℕs) → ( 0s ≤s (𝑥 -s 𝑦) → (𝑥 -s 𝑦) ∈ ℕ0s)) |
| 16 | breq2 5097 | . . . . . . 7 ⊢ (𝑁 = (𝑥 -s 𝑦) → ( 0s ≤s 𝑁 ↔ 0s ≤s (𝑥 -s 𝑦))) | |
| 17 | eleq1 2821 | . . . . . . 7 ⊢ (𝑁 = (𝑥 -s 𝑦) → (𝑁 ∈ ℕ0s ↔ (𝑥 -s 𝑦) ∈ ℕ0s)) | |
| 18 | 16, 17 | imbi12d 344 | . . . . . 6 ⊢ (𝑁 = (𝑥 -s 𝑦) → (( 0s ≤s 𝑁 → 𝑁 ∈ ℕ0s) ↔ ( 0s ≤s (𝑥 -s 𝑦) → (𝑥 -s 𝑦) ∈ ℕ0s))) |
| 19 | 15, 18 | syl5ibrcom 247 | . . . . 5 ⊢ ((𝑥 ∈ ℕs ∧ 𝑦 ∈ ℕs) → (𝑁 = (𝑥 -s 𝑦) → ( 0s ≤s 𝑁 → 𝑁 ∈ ℕ0s))) |
| 20 | 19 | rexlimivv 3175 | . . . 4 ⊢ (∃𝑥 ∈ ℕs ∃𝑦 ∈ ℕs 𝑁 = (𝑥 -s 𝑦) → ( 0s ≤s 𝑁 → 𝑁 ∈ ℕ0s)) |
| 21 | 4, 20 | sylbi 217 | . . 3 ⊢ (𝑁 ∈ ℤs → ( 0s ≤s 𝑁 → 𝑁 ∈ ℕ0s)) |
| 22 | 21 | imp 406 | . 2 ⊢ ((𝑁 ∈ ℤs ∧ 0s ≤s 𝑁) → 𝑁 ∈ ℕ0s) |
| 23 | 3, 22 | impbii 209 | 1 ⊢ (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 class class class wbr 5093 (class class class)co 7352 No csur 27579 ≤s csle 27684 0s c0s 27767 -s csubs 27963 ℕ0scnn0s 28243 ℕscnns 28244 ℤsczs 28303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-nadd 8587 df-no 27582 df-slt 27583 df-bday 27584 df-sle 27685 df-sslt 27722 df-scut 27724 df-0s 27769 df-1s 27770 df-made 27789 df-old 27790 df-left 27792 df-right 27793 df-norec 27882 df-norec2 27893 df-adds 27904 df-negs 27964 df-subs 27965 df-n0s 28245 df-nns 28246 df-zs 28304 |
| This theorem is referenced by: zn0subs 28328 peano5uzs 28329 zs12ge0 28394 |
| Copyright terms: Public domain | W3C validator |