MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eln0zs Structured version   Visualization version   GIF version

Theorem eln0zs 28311
Description: Non-negative surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025.)
Assertion
Ref Expression
eln0zs (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁))

Proof of Theorem eln0zs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0zs 28300 . . 3 (𝑁 ∈ ℕ0s𝑁 ∈ ℤs)
2 n0sge0 28253 . . 3 (𝑁 ∈ ℕ0s → 0s ≤s 𝑁)
31, 2jca 511 . 2 (𝑁 ∈ ℕ0s → (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁))
4 elzs 28295 . . . 4 (𝑁 ∈ ℤs ↔ ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝑁 = (𝑥 -s 𝑦))
5 nnsno 28240 . . . . . . . . . 10 (𝑥 ∈ ℕs𝑥 No )
65adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → 𝑥 No )
7 nnsno 28240 . . . . . . . . . 10 (𝑦 ∈ ℕs𝑦 No )
87adantl 481 . . . . . . . . 9 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → 𝑦 No )
96, 8subsge0d 28026 . . . . . . . 8 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → ( 0s ≤s (𝑥 -s 𝑦) ↔ 𝑦 ≤s 𝑥))
10 nnn0s 28243 . . . . . . . . 9 (𝑦 ∈ ℕs𝑦 ∈ ℕ0s)
11 nnn0s 28243 . . . . . . . . 9 (𝑥 ∈ ℕs𝑥 ∈ ℕ0s)
12 n0subs 28276 . . . . . . . . 9 ((𝑦 ∈ ℕ0s𝑥 ∈ ℕ0s) → (𝑦 ≤s 𝑥 ↔ (𝑥 -s 𝑦) ∈ ℕ0s))
1310, 11, 12syl2anr 597 . . . . . . . 8 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → (𝑦 ≤s 𝑥 ↔ (𝑥 -s 𝑦) ∈ ℕ0s))
149, 13bitrd 279 . . . . . . 7 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → ( 0s ≤s (𝑥 -s 𝑦) ↔ (𝑥 -s 𝑦) ∈ ℕ0s))
1514biimpd 229 . . . . . 6 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → ( 0s ≤s (𝑥 -s 𝑦) → (𝑥 -s 𝑦) ∈ ℕ0s))
16 breq2 5099 . . . . . . 7 (𝑁 = (𝑥 -s 𝑦) → ( 0s ≤s 𝑁 ↔ 0s ≤s (𝑥 -s 𝑦)))
17 eleq1 2816 . . . . . . 7 (𝑁 = (𝑥 -s 𝑦) → (𝑁 ∈ ℕ0s ↔ (𝑥 -s 𝑦) ∈ ℕ0s))
1816, 17imbi12d 344 . . . . . 6 (𝑁 = (𝑥 -s 𝑦) → (( 0s ≤s 𝑁𝑁 ∈ ℕ0s) ↔ ( 0s ≤s (𝑥 -s 𝑦) → (𝑥 -s 𝑦) ∈ ℕ0s)))
1915, 18syl5ibrcom 247 . . . . 5 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → (𝑁 = (𝑥 -s 𝑦) → ( 0s ≤s 𝑁𝑁 ∈ ℕ0s)))
2019rexlimivv 3171 . . . 4 (∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝑁 = (𝑥 -s 𝑦) → ( 0s ≤s 𝑁𝑁 ∈ ℕ0s))
214, 20sylbi 217 . . 3 (𝑁 ∈ ℤs → ( 0s ≤s 𝑁𝑁 ∈ ℕ0s))
2221imp 406 . 2 ((𝑁 ∈ ℤs ∧ 0s ≤s 𝑁) → 𝑁 ∈ ℕ0s)
233, 22impbii 209 1 (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5095  (class class class)co 7353   No csur 27567   ≤s csle 27672   0s c0s 27754   -s csubs 27949  0scnn0s 28229  scnns 28230  sczs 28289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sle 27673  df-sslt 27710  df-scut 27712  df-0s 27756  df-1s 27757  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec 27868  df-norec2 27879  df-adds 27890  df-negs 27950  df-subs 27951  df-n0s 28231  df-nns 28232  df-zs 28290
This theorem is referenced by:  zn0subs  28314  peano5uzs  28315  zs12ge0  28378
  Copyright terms: Public domain W3C validator