|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > eln0zs | Structured version Visualization version GIF version | ||
| Description: Non-negative surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025.) | 
| Ref | Expression | 
|---|---|
| eln0zs | ⊢ (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | n0zs 28375 | . . 3 ⊢ (𝑁 ∈ ℕ0s → 𝑁 ∈ ℤs) | |
| 2 | n0sge0 28341 | . . 3 ⊢ (𝑁 ∈ ℕ0s → 0s ≤s 𝑁) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝑁 ∈ ℕ0s → (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁)) | 
| 4 | elzs 28370 | . . . 4 ⊢ (𝑁 ∈ ℤs ↔ ∃𝑥 ∈ ℕs ∃𝑦 ∈ ℕs 𝑁 = (𝑥 -s 𝑦)) | |
| 5 | nnsno 28329 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℕs → 𝑥 ∈ No ) | |
| 6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℕs ∧ 𝑦 ∈ ℕs) → 𝑥 ∈ No ) | 
| 7 | nnsno 28329 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕs → 𝑦 ∈ No ) | |
| 8 | 7 | adantl 481 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℕs ∧ 𝑦 ∈ ℕs) → 𝑦 ∈ No ) | 
| 9 | 6, 8 | subsge0d 28129 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕs ∧ 𝑦 ∈ ℕs) → ( 0s ≤s (𝑥 -s 𝑦) ↔ 𝑦 ≤s 𝑥)) | 
| 10 | nnn0s 28332 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕs → 𝑦 ∈ ℕ0s) | |
| 11 | nnn0s 28332 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕs → 𝑥 ∈ ℕ0s) | |
| 12 | n0subs 28360 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℕ0s) → (𝑦 ≤s 𝑥 ↔ (𝑥 -s 𝑦) ∈ ℕ0s)) | |
| 13 | 10, 11, 12 | syl2anr 597 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕs ∧ 𝑦 ∈ ℕs) → (𝑦 ≤s 𝑥 ↔ (𝑥 -s 𝑦) ∈ ℕ0s)) | 
| 14 | 9, 13 | bitrd 279 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕs ∧ 𝑦 ∈ ℕs) → ( 0s ≤s (𝑥 -s 𝑦) ↔ (𝑥 -s 𝑦) ∈ ℕ0s)) | 
| 15 | 14 | biimpd 229 | . . . . . 6 ⊢ ((𝑥 ∈ ℕs ∧ 𝑦 ∈ ℕs) → ( 0s ≤s (𝑥 -s 𝑦) → (𝑥 -s 𝑦) ∈ ℕ0s)) | 
| 16 | breq2 5147 | . . . . . . 7 ⊢ (𝑁 = (𝑥 -s 𝑦) → ( 0s ≤s 𝑁 ↔ 0s ≤s (𝑥 -s 𝑦))) | |
| 17 | eleq1 2829 | . . . . . . 7 ⊢ (𝑁 = (𝑥 -s 𝑦) → (𝑁 ∈ ℕ0s ↔ (𝑥 -s 𝑦) ∈ ℕ0s)) | |
| 18 | 16, 17 | imbi12d 344 | . . . . . 6 ⊢ (𝑁 = (𝑥 -s 𝑦) → (( 0s ≤s 𝑁 → 𝑁 ∈ ℕ0s) ↔ ( 0s ≤s (𝑥 -s 𝑦) → (𝑥 -s 𝑦) ∈ ℕ0s))) | 
| 19 | 15, 18 | syl5ibrcom 247 | . . . . 5 ⊢ ((𝑥 ∈ ℕs ∧ 𝑦 ∈ ℕs) → (𝑁 = (𝑥 -s 𝑦) → ( 0s ≤s 𝑁 → 𝑁 ∈ ℕ0s))) | 
| 20 | 19 | rexlimivv 3201 | . . . 4 ⊢ (∃𝑥 ∈ ℕs ∃𝑦 ∈ ℕs 𝑁 = (𝑥 -s 𝑦) → ( 0s ≤s 𝑁 → 𝑁 ∈ ℕ0s)) | 
| 21 | 4, 20 | sylbi 217 | . . 3 ⊢ (𝑁 ∈ ℤs → ( 0s ≤s 𝑁 → 𝑁 ∈ ℕ0s)) | 
| 22 | 21 | imp 406 | . 2 ⊢ ((𝑁 ∈ ℤs ∧ 0s ≤s 𝑁) → 𝑁 ∈ ℕ0s) | 
| 23 | 3, 22 | impbii 209 | 1 ⊢ (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 class class class wbr 5143 (class class class)co 7431 No csur 27684 ≤s csle 27789 0s c0s 27867 -s csubs 28052 ℕ0scnn0s 28318 ℕscnns 28319 ℤsczs 28364 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-ot 4635 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-nadd 8704 df-no 27687 df-slt 27688 df-bday 27689 df-sle 27790 df-sslt 27826 df-scut 27828 df-0s 27869 df-1s 27870 df-made 27886 df-old 27887 df-left 27889 df-right 27890 df-norec 27971 df-norec2 27982 df-adds 27993 df-negs 28053 df-subs 28054 df-n0s 28320 df-nns 28321 df-zs 28365 | 
| This theorem is referenced by: zn0subs 28389 peano5uzs 28390 | 
| Copyright terms: Public domain | W3C validator |