MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eln0zs Structured version   Visualization version   GIF version

Theorem eln0zs 28322
Description: Non-negative surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025.)
Assertion
Ref Expression
eln0zs (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁))

Proof of Theorem eln0zs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0zs 28311 . . 3 (𝑁 ∈ ℕ0s𝑁 ∈ ℤs)
2 n0sge0 28264 . . 3 (𝑁 ∈ ℕ0s → 0s ≤s 𝑁)
31, 2jca 511 . 2 (𝑁 ∈ ℕ0s → (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁))
4 elzs 28306 . . . 4 (𝑁 ∈ ℤs ↔ ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝑁 = (𝑥 -s 𝑦))
5 nnsno 28251 . . . . . . . . . 10 (𝑥 ∈ ℕs𝑥 No )
65adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → 𝑥 No )
7 nnsno 28251 . . . . . . . . . 10 (𝑦 ∈ ℕs𝑦 No )
87adantl 481 . . . . . . . . 9 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → 𝑦 No )
96, 8subsge0d 28037 . . . . . . . 8 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → ( 0s ≤s (𝑥 -s 𝑦) ↔ 𝑦 ≤s 𝑥))
10 nnn0s 28254 . . . . . . . . 9 (𝑦 ∈ ℕs𝑦 ∈ ℕ0s)
11 nnn0s 28254 . . . . . . . . 9 (𝑥 ∈ ℕs𝑥 ∈ ℕ0s)
12 n0subs 28287 . . . . . . . . 9 ((𝑦 ∈ ℕ0s𝑥 ∈ ℕ0s) → (𝑦 ≤s 𝑥 ↔ (𝑥 -s 𝑦) ∈ ℕ0s))
1310, 11, 12syl2anr 597 . . . . . . . 8 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → (𝑦 ≤s 𝑥 ↔ (𝑥 -s 𝑦) ∈ ℕ0s))
149, 13bitrd 279 . . . . . . 7 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → ( 0s ≤s (𝑥 -s 𝑦) ↔ (𝑥 -s 𝑦) ∈ ℕ0s))
1514biimpd 229 . . . . . 6 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → ( 0s ≤s (𝑥 -s 𝑦) → (𝑥 -s 𝑦) ∈ ℕ0s))
16 breq2 5095 . . . . . . 7 (𝑁 = (𝑥 -s 𝑦) → ( 0s ≤s 𝑁 ↔ 0s ≤s (𝑥 -s 𝑦)))
17 eleq1 2819 . . . . . . 7 (𝑁 = (𝑥 -s 𝑦) → (𝑁 ∈ ℕ0s ↔ (𝑥 -s 𝑦) ∈ ℕ0s))
1816, 17imbi12d 344 . . . . . 6 (𝑁 = (𝑥 -s 𝑦) → (( 0s ≤s 𝑁𝑁 ∈ ℕ0s) ↔ ( 0s ≤s (𝑥 -s 𝑦) → (𝑥 -s 𝑦) ∈ ℕ0s)))
1915, 18syl5ibrcom 247 . . . . 5 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → (𝑁 = (𝑥 -s 𝑦) → ( 0s ≤s 𝑁𝑁 ∈ ℕ0s)))
2019rexlimivv 3174 . . . 4 (∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝑁 = (𝑥 -s 𝑦) → ( 0s ≤s 𝑁𝑁 ∈ ℕ0s))
214, 20sylbi 217 . . 3 (𝑁 ∈ ℤs → ( 0s ≤s 𝑁𝑁 ∈ ℕ0s))
2221imp 406 . 2 ((𝑁 ∈ ℤs ∧ 0s ≤s 𝑁) → 𝑁 ∈ ℕ0s)
233, 22impbii 209 1 (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5091  (class class class)co 7346   No csur 27576   ≤s csle 27681   0s c0s 27764   -s csubs 27960  0scnn0s 28240  scnns 28241  sczs 28300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27579  df-slt 27580  df-bday 27581  df-sle 27682  df-sslt 27719  df-scut 27721  df-0s 27766  df-1s 27767  df-made 27786  df-old 27787  df-left 27789  df-right 27790  df-norec 27879  df-norec2 27890  df-adds 27901  df-negs 27961  df-subs 27962  df-n0s 28242  df-nns 28243  df-zs 28301
This theorem is referenced by:  zn0subs  28325  peano5uzs  28326  zs12ge0  28391
  Copyright terms: Public domain W3C validator