MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eln0zs Structured version   Visualization version   GIF version

Theorem eln0zs 28325
Description: Non-negative surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025.)
Assertion
Ref Expression
eln0zs (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁))

Proof of Theorem eln0zs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0zs 28314 . . 3 (𝑁 ∈ ℕ0s𝑁 ∈ ℤs)
2 n0sge0 28267 . . 3 (𝑁 ∈ ℕ0s → 0s ≤s 𝑁)
31, 2jca 511 . 2 (𝑁 ∈ ℕ0s → (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁))
4 elzs 28309 . . . 4 (𝑁 ∈ ℤs ↔ ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝑁 = (𝑥 -s 𝑦))
5 nnsno 28254 . . . . . . . . . 10 (𝑥 ∈ ℕs𝑥 No )
65adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → 𝑥 No )
7 nnsno 28254 . . . . . . . . . 10 (𝑦 ∈ ℕs𝑦 No )
87adantl 481 . . . . . . . . 9 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → 𝑦 No )
96, 8subsge0d 28040 . . . . . . . 8 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → ( 0s ≤s (𝑥 -s 𝑦) ↔ 𝑦 ≤s 𝑥))
10 nnn0s 28257 . . . . . . . . 9 (𝑦 ∈ ℕs𝑦 ∈ ℕ0s)
11 nnn0s 28257 . . . . . . . . 9 (𝑥 ∈ ℕs𝑥 ∈ ℕ0s)
12 n0subs 28290 . . . . . . . . 9 ((𝑦 ∈ ℕ0s𝑥 ∈ ℕ0s) → (𝑦 ≤s 𝑥 ↔ (𝑥 -s 𝑦) ∈ ℕ0s))
1310, 11, 12syl2anr 597 . . . . . . . 8 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → (𝑦 ≤s 𝑥 ↔ (𝑥 -s 𝑦) ∈ ℕ0s))
149, 13bitrd 279 . . . . . . 7 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → ( 0s ≤s (𝑥 -s 𝑦) ↔ (𝑥 -s 𝑦) ∈ ℕ0s))
1514biimpd 229 . . . . . 6 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → ( 0s ≤s (𝑥 -s 𝑦) → (𝑥 -s 𝑦) ∈ ℕ0s))
16 breq2 5097 . . . . . . 7 (𝑁 = (𝑥 -s 𝑦) → ( 0s ≤s 𝑁 ↔ 0s ≤s (𝑥 -s 𝑦)))
17 eleq1 2821 . . . . . . 7 (𝑁 = (𝑥 -s 𝑦) → (𝑁 ∈ ℕ0s ↔ (𝑥 -s 𝑦) ∈ ℕ0s))
1816, 17imbi12d 344 . . . . . 6 (𝑁 = (𝑥 -s 𝑦) → (( 0s ≤s 𝑁𝑁 ∈ ℕ0s) ↔ ( 0s ≤s (𝑥 -s 𝑦) → (𝑥 -s 𝑦) ∈ ℕ0s)))
1915, 18syl5ibrcom 247 . . . . 5 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → (𝑁 = (𝑥 -s 𝑦) → ( 0s ≤s 𝑁𝑁 ∈ ℕ0s)))
2019rexlimivv 3175 . . . 4 (∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝑁 = (𝑥 -s 𝑦) → ( 0s ≤s 𝑁𝑁 ∈ ℕ0s))
214, 20sylbi 217 . . 3 (𝑁 ∈ ℤs → ( 0s ≤s 𝑁𝑁 ∈ ℕ0s))
2221imp 406 . 2 ((𝑁 ∈ ℤs ∧ 0s ≤s 𝑁) → 𝑁 ∈ ℕ0s)
233, 22impbii 209 1 (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057   class class class wbr 5093  (class class class)co 7352   No csur 27579   ≤s csle 27684   0s c0s 27767   -s csubs 27963  0scnn0s 28243  scnns 28244  sczs 28303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-nadd 8587  df-no 27582  df-slt 27583  df-bday 27584  df-sle 27685  df-sslt 27722  df-scut 27724  df-0s 27769  df-1s 27770  df-made 27789  df-old 27790  df-left 27792  df-right 27793  df-norec 27882  df-norec2 27893  df-adds 27904  df-negs 27964  df-subs 27965  df-n0s 28245  df-nns 28246  df-zs 28304
This theorem is referenced by:  zn0subs  28328  peano5uzs  28329  zs12ge0  28394
  Copyright terms: Public domain W3C validator