MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eln0zs Structured version   Visualization version   GIF version

Theorem eln0zs 28345
Description: Non-negative surreal integer property expressed in terms of integers. (Contributed by Scott Fenton, 25-Jul-2025.)
Assertion
Ref Expression
eln0zs (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁))

Proof of Theorem eln0zs
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0zs 28334 . . 3 (𝑁 ∈ ℕ0s𝑁 ∈ ℤs)
2 n0sge0 28287 . . 3 (𝑁 ∈ ℕ0s → 0s ≤s 𝑁)
31, 2jca 511 . 2 (𝑁 ∈ ℕ0s → (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁))
4 elzs 28329 . . . 4 (𝑁 ∈ ℤs ↔ ∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝑁 = (𝑥 -s 𝑦))
5 nnsno 28274 . . . . . . . . . 10 (𝑥 ∈ ℕs𝑥 No )
65adantr 480 . . . . . . . . 9 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → 𝑥 No )
7 nnsno 28274 . . . . . . . . . 10 (𝑦 ∈ ℕs𝑦 No )
87adantl 481 . . . . . . . . 9 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → 𝑦 No )
96, 8subsge0d 28060 . . . . . . . 8 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → ( 0s ≤s (𝑥 -s 𝑦) ↔ 𝑦 ≤s 𝑥))
10 nnn0s 28277 . . . . . . . . 9 (𝑦 ∈ ℕs𝑦 ∈ ℕ0s)
11 nnn0s 28277 . . . . . . . . 9 (𝑥 ∈ ℕs𝑥 ∈ ℕ0s)
12 n0subs 28310 . . . . . . . . 9 ((𝑦 ∈ ℕ0s𝑥 ∈ ℕ0s) → (𝑦 ≤s 𝑥 ↔ (𝑥 -s 𝑦) ∈ ℕ0s))
1310, 11, 12syl2anr 597 . . . . . . . 8 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → (𝑦 ≤s 𝑥 ↔ (𝑥 -s 𝑦) ∈ ℕ0s))
149, 13bitrd 279 . . . . . . 7 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → ( 0s ≤s (𝑥 -s 𝑦) ↔ (𝑥 -s 𝑦) ∈ ℕ0s))
1514biimpd 229 . . . . . 6 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → ( 0s ≤s (𝑥 -s 𝑦) → (𝑥 -s 𝑦) ∈ ℕ0s))
16 breq2 5128 . . . . . . 7 (𝑁 = (𝑥 -s 𝑦) → ( 0s ≤s 𝑁 ↔ 0s ≤s (𝑥 -s 𝑦)))
17 eleq1 2823 . . . . . . 7 (𝑁 = (𝑥 -s 𝑦) → (𝑁 ∈ ℕ0s ↔ (𝑥 -s 𝑦) ∈ ℕ0s))
1816, 17imbi12d 344 . . . . . 6 (𝑁 = (𝑥 -s 𝑦) → (( 0s ≤s 𝑁𝑁 ∈ ℕ0s) ↔ ( 0s ≤s (𝑥 -s 𝑦) → (𝑥 -s 𝑦) ∈ ℕ0s)))
1915, 18syl5ibrcom 247 . . . . 5 ((𝑥 ∈ ℕs𝑦 ∈ ℕs) → (𝑁 = (𝑥 -s 𝑦) → ( 0s ≤s 𝑁𝑁 ∈ ℕ0s)))
2019rexlimivv 3187 . . . 4 (∃𝑥 ∈ ℕs𝑦 ∈ ℕs 𝑁 = (𝑥 -s 𝑦) → ( 0s ≤s 𝑁𝑁 ∈ ℕ0s))
214, 20sylbi 217 . . 3 (𝑁 ∈ ℤs → ( 0s ≤s 𝑁𝑁 ∈ ℕ0s))
2221imp 406 . 2 ((𝑁 ∈ ℤs ∧ 0s ≤s 𝑁) → 𝑁 ∈ ℕ0s)
233, 22impbii 209 1 (𝑁 ∈ ℕ0s ↔ (𝑁 ∈ ℤs ∧ 0s ≤s 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3061   class class class wbr 5124  (class class class)co 7410   No csur 27608   ≤s csle 27713   0s c0s 27791   -s csubs 27983  0scnn0s 28263  scnns 28264  sczs 28323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-nadd 8683  df-no 27611  df-slt 27612  df-bday 27613  df-sle 27714  df-sslt 27750  df-scut 27752  df-0s 27793  df-1s 27794  df-made 27812  df-old 27813  df-left 27815  df-right 27816  df-norec 27902  df-norec2 27913  df-adds 27924  df-negs 27984  df-subs 27985  df-n0s 28265  df-nns 28266  df-zs 28324
This theorem is referenced by:  zn0subs  28348  peano5uzs  28349  zs12ge0  28399
  Copyright terms: Public domain W3C validator