| Step | Hyp | Ref
| Expression |
| 1 | | simprl 770 |
. . . . . . 7
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs
∧ 𝐴 = (𝑧 /su
(2s↑s𝑝)))) → 𝑧 ∈ ℤs) |
| 2 | | simpllr 775 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs
∧ 𝐴 = (𝑧 /su
(2s↑s𝑝)))) → 0s ≤s 𝐴) |
| 3 | | simprr 772 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs
∧ 𝐴 = (𝑧 /su
(2s↑s𝑝)))) → 𝐴 = (𝑧 /su
(2s↑s𝑝))) |
| 4 | 2, 3 | breqtrd 5145 |
. . . . . . . 8
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs
∧ 𝐴 = (𝑧 /su
(2s↑s𝑝)))) → 0s ≤s (𝑧 /su
(2s↑s𝑝))) |
| 5 | 1 | znod 28323 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs
∧ 𝐴 = (𝑧 /su
(2s↑s𝑝)))) → 𝑧 ∈ No
) |
| 6 | | simplr 768 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs
∧ 𝐴 = (𝑧 /su
(2s↑s𝑝)))) → 𝑝 ∈
ℕ0s) |
| 7 | 5, 6 | pw2ge0divsd 28381 |
. . . . . . . 8
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs
∧ 𝐴 = (𝑧 /su
(2s↑s𝑝)))) → ( 0s ≤s 𝑧 ↔ 0s ≤s
(𝑧 /su
(2s↑s𝑝)))) |
| 8 | 4, 7 | mpbird 257 |
. . . . . . 7
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs
∧ 𝐴 = (𝑧 /su
(2s↑s𝑝)))) → 0s ≤s 𝑧) |
| 9 | | eln0zs 28340 |
. . . . . . 7
⊢ (𝑧 ∈ ℕ0s
↔ (𝑧 ∈
ℤs ∧ 0s ≤s 𝑧)) |
| 10 | 1, 8, 9 | sylanbrc 583 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs
∧ 𝐴 = (𝑧 /su
(2s↑s𝑝)))) → 𝑧 ∈
ℕ0s) |
| 11 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
→ 𝑧 ∈
ℕ0s) |
| 12 | | 2nns 28356 |
. . . . . . . . . . . . 13
⊢
2s ∈ ℕs |
| 13 | | simplr 768 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
→ 𝑝 ∈
ℕ0s) |
| 14 | | nnexpscl 28371 |
. . . . . . . . . . . . 13
⊢
((2s ∈ ℕs ∧ 𝑝 ∈ ℕ0s) →
(2s↑s𝑝) ∈
ℕs) |
| 15 | 12, 13, 14 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
→ (2s↑s𝑝) ∈
ℕs) |
| 16 | | eucliddivs 28317 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℕ0s
∧ (2s↑s𝑝) ∈ ℕs) →
∃𝑥 ∈
ℕ0s ∃𝑦 ∈ ℕ0s (𝑧 =
(((2s↑s𝑝) ·s 𝑥) +s 𝑦) ∧ 𝑦 <s (2s↑s𝑝))) |
| 17 | 11, 15, 16 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
→ ∃𝑥 ∈
ℕ0s ∃𝑦 ∈ ℕ0s (𝑧 =
(((2s↑s𝑝) ·s 𝑥) +s 𝑦) ∧ 𝑦 <s (2s↑s𝑝))) |
| 18 | | 2sno 28357 |
. . . . . . . . . . . . . . . . . . 19
⊢
2s ∈ No |
| 19 | | simpllr 775 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) → 𝑝 ∈
ℕ0s) |
| 20 | | expscl 28369 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2s ∈ No ∧ 𝑝 ∈ ℕ0s)
→ (2s↑s𝑝) ∈ No
) |
| 21 | 18, 19, 20 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) →
(2s↑s𝑝) ∈ No
) |
| 22 | | simprl 770 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) → 𝑥 ∈
ℕ0s) |
| 23 | 22 | n0snod 28270 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) → 𝑥 ∈
No ) |
| 24 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) → 𝑦 ∈
ℕ0s) |
| 25 | 24 | n0snod 28270 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) → 𝑦 ∈
No ) |
| 26 | 25, 19 | pw2divscld 28376 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) → (𝑦 /su
(2s↑s𝑝)) ∈ No
) |
| 27 | 21, 23, 26 | addsdid 28111 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) →
((2s↑s𝑝) ·s (𝑥 +s (𝑦 /su
(2s↑s𝑝)))) =
(((2s↑s𝑝) ·s 𝑥) +s
((2s↑s𝑝) ·s (𝑦 /su
(2s↑s𝑝))))) |
| 28 | 25, 19 | pw2divscan2d 28379 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) →
((2s↑s𝑝) ·s (𝑦 /su
(2s↑s𝑝))) = 𝑦) |
| 29 | 28 | oveq2d 7421 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) →
(((2s↑s𝑝) ·s 𝑥) +s
((2s↑s𝑝) ·s (𝑦 /su
(2s↑s𝑝)))) =
(((2s↑s𝑝) ·s 𝑥) +s 𝑦)) |
| 30 | 27, 29 | eqtrd 2770 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) →
((2s↑s𝑝) ·s (𝑥 +s (𝑦 /su
(2s↑s𝑝)))) =
(((2s↑s𝑝) ·s 𝑥) +s 𝑦)) |
| 31 | 30 | eqeq2d 2746 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) → (𝑧 =
((2s↑s𝑝) ·s (𝑥 +s (𝑦 /su
(2s↑s𝑝)))) ↔ 𝑧 = (((2s↑s𝑝) ·s 𝑥) +s 𝑦))) |
| 32 | | eqcom 2742 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 =
((2s↑s𝑝) ·s (𝑥 +s (𝑦 /su
(2s↑s𝑝)))) ↔
((2s↑s𝑝) ·s (𝑥 +s (𝑦 /su
(2s↑s𝑝)))) = 𝑧) |
| 33 | 31, 32 | bitr3di 286 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) → (𝑧 =
(((2s↑s𝑝) ·s 𝑥) +s 𝑦) ↔
((2s↑s𝑝) ·s (𝑥 +s (𝑦 /su
(2s↑s𝑝)))) = 𝑧)) |
| 34 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) → 𝑧 ∈
ℕ0s) |
| 35 | 34 | n0snod 28270 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) → 𝑧 ∈
No ) |
| 36 | 23, 26 | addscld 27939 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) → (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∈ No
) |
| 37 | 35, 36, 19 | pw2divsmuld 28377 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) → ((𝑧 /su
(2s↑s𝑝)) = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ↔
((2s↑s𝑝) ·s (𝑥 +s (𝑦 /su
(2s↑s𝑝)))) = 𝑧)) |
| 38 | 33, 37 | bitr4d 282 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) → (𝑧 =
(((2s↑s𝑝) ·s 𝑥) +s 𝑦) ↔ (𝑧 /su
(2s↑s𝑝)) = (𝑥 +s (𝑦 /su
(2s↑s𝑝))))) |
| 39 | 38 | anbi1d 631 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
∧ (𝑥 ∈
ℕ0s ∧ 𝑦 ∈ ℕ0s)) → ((𝑧 =
(((2s↑s𝑝) ·s 𝑥) +s 𝑦) ∧ 𝑦 <s (2s↑s𝑝)) ↔ ((𝑧 /su
(2s↑s𝑝)) = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)))) |
| 40 | 39 | 2rexbidva 3204 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
→ (∃𝑥 ∈
ℕ0s ∃𝑦 ∈ ℕ0s (𝑧 =
(((2s↑s𝑝) ·s 𝑥) +s 𝑦) ∧ 𝑦 <s (2s↑s𝑝)) ↔ ∃𝑥 ∈ ℕ0s
∃𝑦 ∈
ℕ0s ((𝑧
/su (2s↑s𝑝)) = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)))) |
| 41 | 17, 40 | mpbid 232 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s)
→ ∃𝑥 ∈
ℕ0s ∃𝑦 ∈ ℕ0s ((𝑧 /su
(2s↑s𝑝)) = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝))) |
| 42 | 41 | adantrl 716 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝐴 = (𝑧 /su
(2s↑s𝑝)) ∧ 𝑧 ∈ ℕ0s)) →
∃𝑥 ∈
ℕ0s ∃𝑦 ∈ ℕ0s ((𝑧 /su
(2s↑s𝑝)) = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝))) |
| 43 | | simprl 770 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝐴 = (𝑧 /su
(2s↑s𝑝)) ∧ 𝑧 ∈ ℕ0s)) → 𝐴 = (𝑧 /su
(2s↑s𝑝))) |
| 44 | 43 | eqeq1d 2737 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝐴 = (𝑧 /su
(2s↑s𝑝)) ∧ 𝑧 ∈ ℕ0s)) → (𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ↔ (𝑧 /su
(2s↑s𝑝)) = (𝑥 +s (𝑦 /su
(2s↑s𝑝))))) |
| 45 | 44 | anbi1d 631 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝐴 = (𝑧 /su
(2s↑s𝑝)) ∧ 𝑧 ∈ ℕ0s)) → ((𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)) ↔ ((𝑧 /su
(2s↑s𝑝)) = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)))) |
| 46 | 45 | 2rexbidv 3206 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝐴 = (𝑧 /su
(2s↑s𝑝)) ∧ 𝑧 ∈ ℕ0s)) →
(∃𝑥 ∈
ℕ0s ∃𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)) ↔ ∃𝑥 ∈ ℕ0s
∃𝑦 ∈
ℕ0s ((𝑧
/su (2s↑s𝑝)) = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)))) |
| 47 | 42, 46 | mpbird 257 |
. . . . . . . 8
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝐴 = (𝑧 /su
(2s↑s𝑝)) ∧ 𝑧 ∈ ℕ0s)) →
∃𝑥 ∈
ℕ0s ∃𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝))) |
| 48 | 47 | expr 456 |
. . . . . . 7
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝐴 = (𝑧 /su
(2s↑s𝑝))) → (𝑧 ∈ ℕ0s →
∃𝑥 ∈
ℕ0s ∃𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)))) |
| 49 | 48 | adantrl 716 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs
∧ 𝐴 = (𝑧 /su
(2s↑s𝑝)))) → (𝑧 ∈ ℕ0s →
∃𝑥 ∈
ℕ0s ∃𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)))) |
| 50 | 10, 49 | mpd 15 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs
∧ 𝐴 = (𝑧 /su
(2s↑s𝑝)))) → ∃𝑥 ∈ ℕ0s ∃𝑦 ∈ ℕ0s
(𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝))) |
| 51 | 50 | rexlimdvaa 3142 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) →
(∃𝑧 ∈
ℤs 𝐴 =
(𝑧 /su
(2s↑s𝑝)) → ∃𝑥 ∈ ℕ0s ∃𝑦 ∈ ℕ0s
(𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)))) |
| 52 | | oveq1 7412 |
. . . . . . . . 9
⊢ (𝑧 =
(((2s↑s𝑝) ·s 𝑥) +s 𝑦) → (𝑧 /su
(2s↑s𝑝)) = ((((2s↑s𝑝) ·s 𝑥) +s 𝑦) /su
(2s↑s𝑝))) |
| 53 | 52 | eqeq2d 2746 |
. . . . . . . 8
⊢ (𝑧 =
(((2s↑s𝑝) ·s 𝑥) +s 𝑦) → ((𝑥 +s (𝑦 /su
(2s↑s𝑝))) = (𝑧 /su
(2s↑s𝑝)) ↔ (𝑥 +s (𝑦 /su
(2s↑s𝑝))) =
((((2s↑s𝑝) ·s 𝑥) +s 𝑦) /su
(2s↑s𝑝)))) |
| 54 | | nnn0s 28272 |
. . . . . . . . . . . . 13
⊢
(2s ∈ ℕs → 2s ∈
ℕ0s) |
| 55 | 12, 54 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
2s ∈ ℕ0s |
| 56 | | simplr 768 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → 𝑝 ∈
ℕ0s) |
| 57 | | n0expscl 28370 |
. . . . . . . . . . . 12
⊢
((2s ∈ ℕ0s ∧ 𝑝 ∈ ℕ0s) →
(2s↑s𝑝) ∈
ℕ0s) |
| 58 | 55, 56, 57 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → (2s↑s𝑝) ∈
ℕ0s) |
| 59 | | simprl 770 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → 𝑥 ∈
ℕ0s) |
| 60 | | n0mulscl 28289 |
. . . . . . . . . . 11
⊢
(((2s↑s𝑝) ∈ ℕ0s ∧ 𝑥 ∈ ℕ0s)
→ ((2s↑s𝑝) ·s 𝑥) ∈
ℕ0s) |
| 61 | 58, 59, 60 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → ((2s↑s𝑝) ·s 𝑥) ∈
ℕ0s) |
| 62 | | simprr 772 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → 𝑦 ∈
ℕ0s) |
| 63 | | n0addscl 28288 |
. . . . . . . . . 10
⊢
((((2s↑s𝑝) ·s 𝑥) ∈ ℕ0s ∧ 𝑦 ∈ ℕ0s)
→ (((2s↑s𝑝) ·s 𝑥) +s 𝑦) ∈
ℕ0s) |
| 64 | 61, 62, 63 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → (((2s↑s𝑝) ·s 𝑥) +s 𝑦) ∈
ℕ0s) |
| 65 | 64 | n0zsd 28330 |
. . . . . . . 8
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → (((2s↑s𝑝) ·s 𝑥) +s 𝑦) ∈
ℤs) |
| 66 | 59 | n0snod 28270 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → 𝑥 ∈ No
) |
| 67 | 66, 56 | pw2divscan3d 28378 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → (((2s↑s𝑝) ·s 𝑥) /su
(2s↑s𝑝)) = 𝑥) |
| 68 | 67 | eqcomd 2741 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → 𝑥 = (((2s↑s𝑝) ·s 𝑥) /su
(2s↑s𝑝))) |
| 69 | 68 | oveq1d 7420 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → (𝑥 +s (𝑦 /su
(2s↑s𝑝))) =
((((2s↑s𝑝) ·s 𝑥) /su
(2s↑s𝑝)) +s (𝑦 /su
(2s↑s𝑝)))) |
| 70 | 18, 56, 20 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → (2s↑s𝑝) ∈
No ) |
| 71 | 70, 66 | mulscld 28090 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → ((2s↑s𝑝) ·s 𝑥) ∈
No ) |
| 72 | 62 | n0snod 28270 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → 𝑦 ∈ No
) |
| 73 | 71, 72, 56 | pw2divsdird 28383 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → ((((2s↑s𝑝) ·s 𝑥) +s 𝑦) /su
(2s↑s𝑝)) = ((((2s↑s𝑝) ·s 𝑥) /su
(2s↑s𝑝)) +s (𝑦 /su
(2s↑s𝑝)))) |
| 74 | 69, 73 | eqtr4d 2773 |
. . . . . . . 8
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → (𝑥 +s (𝑦 /su
(2s↑s𝑝))) =
((((2s↑s𝑝) ·s 𝑥) +s 𝑦) /su
(2s↑s𝑝))) |
| 75 | 53, 65, 74 | rspcedvdw 3604 |
. . . . . . 7
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → ∃𝑧 ∈ ℤs (𝑥 +s (𝑦 /su
(2s↑s𝑝))) = (𝑧 /su
(2s↑s𝑝))) |
| 76 | | eqeq1 2739 |
. . . . . . . 8
⊢ (𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) → (𝐴 = (𝑧 /su
(2s↑s𝑝)) ↔ (𝑥 +s (𝑦 /su
(2s↑s𝑝))) = (𝑧 /su
(2s↑s𝑝)))) |
| 77 | 76 | rexbidv 3164 |
. . . . . . 7
⊢ (𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) → (∃𝑧 ∈ ℤs 𝐴 = (𝑧 /su
(2s↑s𝑝)) ↔ ∃𝑧 ∈ ℤs (𝑥 +s (𝑦 /su
(2s↑s𝑝))) = (𝑧 /su
(2s↑s𝑝)))) |
| 78 | 75, 77 | syl5ibrcom 247 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → (𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) → ∃𝑧 ∈ ℤs 𝐴 = (𝑧 /su
(2s↑s𝑝)))) |
| 79 | 78 | adantrd 491 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s
∧ 𝑦 ∈
ℕ0s)) → ((𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)) → ∃𝑧 ∈ ℤs
𝐴 = (𝑧 /su
(2s↑s𝑝)))) |
| 80 | 79 | rexlimdvva 3198 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) →
(∃𝑥 ∈
ℕ0s ∃𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)) → ∃𝑧 ∈ ℤs
𝐴 = (𝑧 /su
(2s↑s𝑝)))) |
| 81 | 51, 80 | impbid 212 |
. . 3
⊢ (((𝐴 ∈
No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) →
(∃𝑧 ∈
ℤs 𝐴 =
(𝑧 /su
(2s↑s𝑝)) ↔ ∃𝑥 ∈ ℕ0s ∃𝑦 ∈ ℕ0s
(𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)))) |
| 82 | 81 | rexbidva 3162 |
. 2
⊢ ((𝐴 ∈
No ∧ 0s ≤s 𝐴) → (∃𝑝 ∈ ℕ0s ∃𝑧 ∈ ℤs
𝐴 = (𝑧 /su
(2s↑s𝑝)) ↔ ∃𝑝 ∈ ℕ0s ∃𝑥 ∈ ℕ0s
∃𝑦 ∈
ℕ0s (𝐴 =
(𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)))) |
| 83 | | elzs12 28389 |
. . 3
⊢ (𝐴 ∈ ℤs[1/2]
↔ ∃𝑧 ∈
ℤs ∃𝑝 ∈ ℕ0s 𝐴 = (𝑧 /su
(2s↑s𝑝))) |
| 84 | | rexcom 3271 |
. . 3
⊢
(∃𝑧 ∈
ℤs ∃𝑝 ∈ ℕ0s 𝐴 = (𝑧 /su
(2s↑s𝑝)) ↔ ∃𝑝 ∈ ℕ0s ∃𝑧 ∈ ℤs
𝐴 = (𝑧 /su
(2s↑s𝑝))) |
| 85 | 83, 84 | bitri 275 |
. 2
⊢ (𝐴 ∈ ℤs[1/2]
↔ ∃𝑝 ∈
ℕ0s ∃𝑧 ∈ ℤs 𝐴 = (𝑧 /su
(2s↑s𝑝))) |
| 86 | | rexcom 3271 |
. . . 4
⊢
(∃𝑦 ∈
ℕ0s ∃𝑝 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)) ↔ ∃𝑝 ∈ ℕ0s
∃𝑦 ∈
ℕ0s (𝐴 =
(𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝))) |
| 87 | 86 | rexbii 3083 |
. . 3
⊢
(∃𝑥 ∈
ℕ0s ∃𝑦 ∈ ℕ0s ∃𝑝 ∈ ℕ0s
(𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)) ↔ ∃𝑥 ∈ ℕ0s
∃𝑝 ∈
ℕ0s ∃𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝))) |
| 88 | | rexcom 3271 |
. . 3
⊢
(∃𝑥 ∈
ℕ0s ∃𝑝 ∈ ℕ0s ∃𝑦 ∈ ℕ0s
(𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)) ↔ ∃𝑝 ∈ ℕ0s
∃𝑥 ∈
ℕ0s ∃𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝))) |
| 89 | 87, 88 | bitri 275 |
. 2
⊢
(∃𝑥 ∈
ℕ0s ∃𝑦 ∈ ℕ0s ∃𝑝 ∈ ℕ0s
(𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)) ↔ ∃𝑝 ∈ ℕ0s
∃𝑥 ∈
ℕ0s ∃𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝))) |
| 90 | 82, 85, 89 | 3bitr4g 314 |
1
⊢ ((𝐴 ∈
No ∧ 0s ≤s 𝐴) → (𝐴 ∈ ℤs[1/2] ↔
∃𝑥 ∈
ℕ0s ∃𝑦 ∈ ℕ0s ∃𝑝 ∈ ℕ0s
(𝐴 = (𝑥 +s (𝑦 /su
(2s↑s𝑝))) ∧ 𝑦 <s (2s↑s𝑝)))) |