MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zs12ge0 Structured version   Visualization version   GIF version

Theorem zs12ge0 28394
Description: An expression for non-negative dyadic rationals. (Contributed by Scott Fenton, 8-Nov-2025.)
Assertion
Ref Expression
zs12ge0 ((𝐴 No ∧ 0s ≤s 𝐴) → (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s𝑝 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
Distinct variable group:   𝑥,𝐴,𝑦,𝑝

Proof of Theorem zs12ge0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . . . . 7 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → 𝑧 ∈ ℤs)
2 simpllr 775 . . . . . . . . 9 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → 0s ≤s 𝐴)
3 simprr 772 . . . . . . . . 9 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → 𝐴 = (𝑧 /su (2ss𝑝)))
42, 3breqtrd 5145 . . . . . . . 8 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → 0s ≤s (𝑧 /su (2ss𝑝)))
51znod 28323 . . . . . . . . 9 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → 𝑧 No )
6 simplr 768 . . . . . . . . 9 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → 𝑝 ∈ ℕ0s)
75, 6pw2ge0divsd 28381 . . . . . . . 8 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → ( 0s ≤s 𝑧 ↔ 0s ≤s (𝑧 /su (2ss𝑝))))
84, 7mpbird 257 . . . . . . 7 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → 0s ≤s 𝑧)
9 eln0zs 28340 . . . . . . 7 (𝑧 ∈ ℕ0s ↔ (𝑧 ∈ ℤs ∧ 0s ≤s 𝑧))
101, 8, 9sylanbrc 583 . . . . . 6 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → 𝑧 ∈ ℕ0s)
11 simpr 484 . . . . . . . . . . . 12 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) → 𝑧 ∈ ℕ0s)
12 2nns 28356 . . . . . . . . . . . . 13 2s ∈ ℕs
13 simplr 768 . . . . . . . . . . . . 13 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) → 𝑝 ∈ ℕ0s)
14 nnexpscl 28371 . . . . . . . . . . . . 13 ((2s ∈ ℕs𝑝 ∈ ℕ0s) → (2ss𝑝) ∈ ℕs)
1512, 13, 14sylancr 587 . . . . . . . . . . . 12 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) → (2ss𝑝) ∈ ℕs)
16 eucliddivs 28317 . . . . . . . . . . . 12 ((𝑧 ∈ ℕ0s ∧ (2ss𝑝) ∈ ℕs) → ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝑧 = (((2ss𝑝) ·s 𝑥) +s 𝑦) ∧ 𝑦 <s (2ss𝑝)))
1711, 15, 16syl2anc 584 . . . . . . . . . . 11 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) → ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝑧 = (((2ss𝑝) ·s 𝑥) +s 𝑦) ∧ 𝑦 <s (2ss𝑝)))
18 2sno 28357 . . . . . . . . . . . . . . . . . . 19 2s No
19 simpllr 775 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑝 ∈ ℕ0s)
20 expscl 28369 . . . . . . . . . . . . . . . . . . 19 ((2s No 𝑝 ∈ ℕ0s) → (2ss𝑝) ∈ No )
2118, 19, 20sylancr 587 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (2ss𝑝) ∈ No )
22 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑥 ∈ ℕ0s)
2322n0snod 28270 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑥 No )
24 simprr 772 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑦 ∈ ℕ0s)
2524n0snod 28270 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑦 No )
2625, 19pw2divscld 28376 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (𝑦 /su (2ss𝑝)) ∈ No )
2721, 23, 26addsdid 28111 . . . . . . . . . . . . . . . . 17 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ((2ss𝑝) ·s (𝑥 +s (𝑦 /su (2ss𝑝)))) = (((2ss𝑝) ·s 𝑥) +s ((2ss𝑝) ·s (𝑦 /su (2ss𝑝)))))
2825, 19pw2divscan2d 28379 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ((2ss𝑝) ·s (𝑦 /su (2ss𝑝))) = 𝑦)
2928oveq2d 7421 . . . . . . . . . . . . . . . . 17 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (((2ss𝑝) ·s 𝑥) +s ((2ss𝑝) ·s (𝑦 /su (2ss𝑝)))) = (((2ss𝑝) ·s 𝑥) +s 𝑦))
3027, 29eqtrd 2770 . . . . . . . . . . . . . . . 16 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ((2ss𝑝) ·s (𝑥 +s (𝑦 /su (2ss𝑝)))) = (((2ss𝑝) ·s 𝑥) +s 𝑦))
3130eqeq2d 2746 . . . . . . . . . . . . . . 15 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (𝑧 = ((2ss𝑝) ·s (𝑥 +s (𝑦 /su (2ss𝑝)))) ↔ 𝑧 = (((2ss𝑝) ·s 𝑥) +s 𝑦)))
32 eqcom 2742 . . . . . . . . . . . . . . 15 (𝑧 = ((2ss𝑝) ·s (𝑥 +s (𝑦 /su (2ss𝑝)))) ↔ ((2ss𝑝) ·s (𝑥 +s (𝑦 /su (2ss𝑝)))) = 𝑧)
3331, 32bitr3di 286 . . . . . . . . . . . . . 14 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (𝑧 = (((2ss𝑝) ·s 𝑥) +s 𝑦) ↔ ((2ss𝑝) ·s (𝑥 +s (𝑦 /su (2ss𝑝)))) = 𝑧))
34 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑧 ∈ ℕ0s)
3534n0snod 28270 . . . . . . . . . . . . . . 15 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑧 No )
3623, 26addscld 27939 . . . . . . . . . . . . . . 15 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (𝑥 +s (𝑦 /su (2ss𝑝))) ∈ No )
3735, 36, 19pw2divsmuld 28377 . . . . . . . . . . . . . 14 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ((𝑧 /su (2ss𝑝)) = (𝑥 +s (𝑦 /su (2ss𝑝))) ↔ ((2ss𝑝) ·s (𝑥 +s (𝑦 /su (2ss𝑝)))) = 𝑧))
3833, 37bitr4d 282 . . . . . . . . . . . . 13 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (𝑧 = (((2ss𝑝) ·s 𝑥) +s 𝑦) ↔ (𝑧 /su (2ss𝑝)) = (𝑥 +s (𝑦 /su (2ss𝑝)))))
3938anbi1d 631 . . . . . . . . . . . 12 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ((𝑧 = (((2ss𝑝) ·s 𝑥) +s 𝑦) ∧ 𝑦 <s (2ss𝑝)) ↔ ((𝑧 /su (2ss𝑝)) = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
40392rexbidva 3204 . . . . . . . . . . 11 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) → (∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝑧 = (((2ss𝑝) ·s 𝑥) +s 𝑦) ∧ 𝑦 <s (2ss𝑝)) ↔ ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s ((𝑧 /su (2ss𝑝)) = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
4117, 40mpbid 232 . . . . . . . . . 10 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) → ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s ((𝑧 /su (2ss𝑝)) = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)))
4241adantrl 716 . . . . . . . . 9 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝐴 = (𝑧 /su (2ss𝑝)) ∧ 𝑧 ∈ ℕ0s)) → ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s ((𝑧 /su (2ss𝑝)) = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)))
43 simprl 770 . . . . . . . . . . . 12 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝐴 = (𝑧 /su (2ss𝑝)) ∧ 𝑧 ∈ ℕ0s)) → 𝐴 = (𝑧 /su (2ss𝑝)))
4443eqeq1d 2737 . . . . . . . . . . 11 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝐴 = (𝑧 /su (2ss𝑝)) ∧ 𝑧 ∈ ℕ0s)) → (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ↔ (𝑧 /su (2ss𝑝)) = (𝑥 +s (𝑦 /su (2ss𝑝)))))
4544anbi1d 631 . . . . . . . . . 10 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝐴 = (𝑧 /su (2ss𝑝)) ∧ 𝑧 ∈ ℕ0s)) → ((𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)) ↔ ((𝑧 /su (2ss𝑝)) = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
46452rexbidv 3206 . . . . . . . . 9 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝐴 = (𝑧 /su (2ss𝑝)) ∧ 𝑧 ∈ ℕ0s)) → (∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)) ↔ ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s ((𝑧 /su (2ss𝑝)) = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
4742, 46mpbird 257 . . . . . . . 8 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝐴 = (𝑧 /su (2ss𝑝)) ∧ 𝑧 ∈ ℕ0s)) → ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)))
4847expr 456 . . . . . . 7 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝐴 = (𝑧 /su (2ss𝑝))) → (𝑧 ∈ ℕ0s → ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
4948adantrl 716 . . . . . 6 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → (𝑧 ∈ ℕ0s → ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
5010, 49mpd 15 . . . . 5 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)))
5150rexlimdvaa 3142 . . . 4 (((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) → (∃𝑧 ∈ ℤs 𝐴 = (𝑧 /su (2ss𝑝)) → ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
52 oveq1 7412 . . . . . . . . 9 (𝑧 = (((2ss𝑝) ·s 𝑥) +s 𝑦) → (𝑧 /su (2ss𝑝)) = ((((2ss𝑝) ·s 𝑥) +s 𝑦) /su (2ss𝑝)))
5352eqeq2d 2746 . . . . . . . 8 (𝑧 = (((2ss𝑝) ·s 𝑥) +s 𝑦) → ((𝑥 +s (𝑦 /su (2ss𝑝))) = (𝑧 /su (2ss𝑝)) ↔ (𝑥 +s (𝑦 /su (2ss𝑝))) = ((((2ss𝑝) ·s 𝑥) +s 𝑦) /su (2ss𝑝))))
54 nnn0s 28272 . . . . . . . . . . . . 13 (2s ∈ ℕs → 2s ∈ ℕ0s)
5512, 54ax-mp 5 . . . . . . . . . . . 12 2s ∈ ℕ0s
56 simplr 768 . . . . . . . . . . . 12 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑝 ∈ ℕ0s)
57 n0expscl 28370 . . . . . . . . . . . 12 ((2s ∈ ℕ0s𝑝 ∈ ℕ0s) → (2ss𝑝) ∈ ℕ0s)
5855, 56, 57sylancr 587 . . . . . . . . . . 11 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (2ss𝑝) ∈ ℕ0s)
59 simprl 770 . . . . . . . . . . 11 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑥 ∈ ℕ0s)
60 n0mulscl 28289 . . . . . . . . . . 11 (((2ss𝑝) ∈ ℕ0s𝑥 ∈ ℕ0s) → ((2ss𝑝) ·s 𝑥) ∈ ℕ0s)
6158, 59, 60syl2anc 584 . . . . . . . . . 10 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ((2ss𝑝) ·s 𝑥) ∈ ℕ0s)
62 simprr 772 . . . . . . . . . 10 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑦 ∈ ℕ0s)
63 n0addscl 28288 . . . . . . . . . 10 ((((2ss𝑝) ·s 𝑥) ∈ ℕ0s𝑦 ∈ ℕ0s) → (((2ss𝑝) ·s 𝑥) +s 𝑦) ∈ ℕ0s)
6461, 62, 63syl2anc 584 . . . . . . . . 9 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (((2ss𝑝) ·s 𝑥) +s 𝑦) ∈ ℕ0s)
6564n0zsd 28330 . . . . . . . 8 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (((2ss𝑝) ·s 𝑥) +s 𝑦) ∈ ℤs)
6659n0snod 28270 . . . . . . . . . . . 12 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑥 No )
6766, 56pw2divscan3d 28378 . . . . . . . . . . 11 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (((2ss𝑝) ·s 𝑥) /su (2ss𝑝)) = 𝑥)
6867eqcomd 2741 . . . . . . . . . 10 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑥 = (((2ss𝑝) ·s 𝑥) /su (2ss𝑝)))
6968oveq1d 7420 . . . . . . . . 9 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (𝑥 +s (𝑦 /su (2ss𝑝))) = ((((2ss𝑝) ·s 𝑥) /su (2ss𝑝)) +s (𝑦 /su (2ss𝑝))))
7018, 56, 20sylancr 587 . . . . . . . . . . 11 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (2ss𝑝) ∈ No )
7170, 66mulscld 28090 . . . . . . . . . 10 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ((2ss𝑝) ·s 𝑥) ∈ No )
7262n0snod 28270 . . . . . . . . . 10 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑦 No )
7371, 72, 56pw2divsdird 28383 . . . . . . . . 9 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ((((2ss𝑝) ·s 𝑥) +s 𝑦) /su (2ss𝑝)) = ((((2ss𝑝) ·s 𝑥) /su (2ss𝑝)) +s (𝑦 /su (2ss𝑝))))
7469, 73eqtr4d 2773 . . . . . . . 8 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (𝑥 +s (𝑦 /su (2ss𝑝))) = ((((2ss𝑝) ·s 𝑥) +s 𝑦) /su (2ss𝑝)))
7553, 65, 74rspcedvdw 3604 . . . . . . 7 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ∃𝑧 ∈ ℤs (𝑥 +s (𝑦 /su (2ss𝑝))) = (𝑧 /su (2ss𝑝)))
76 eqeq1 2739 . . . . . . . 8 (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) → (𝐴 = (𝑧 /su (2ss𝑝)) ↔ (𝑥 +s (𝑦 /su (2ss𝑝))) = (𝑧 /su (2ss𝑝))))
7776rexbidv 3164 . . . . . . 7 (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) → (∃𝑧 ∈ ℤs 𝐴 = (𝑧 /su (2ss𝑝)) ↔ ∃𝑧 ∈ ℤs (𝑥 +s (𝑦 /su (2ss𝑝))) = (𝑧 /su (2ss𝑝))))
7875, 77syl5ibrcom 247 . . . . . 6 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) → ∃𝑧 ∈ ℤs 𝐴 = (𝑧 /su (2ss𝑝))))
7978adantrd 491 . . . . 5 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ((𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)) → ∃𝑧 ∈ ℤs 𝐴 = (𝑧 /su (2ss𝑝))))
8079rexlimdvva 3198 . . . 4 (((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) → (∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)) → ∃𝑧 ∈ ℤs 𝐴 = (𝑧 /su (2ss𝑝))))
8151, 80impbid 212 . . 3 (((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) → (∃𝑧 ∈ ℤs 𝐴 = (𝑧 /su (2ss𝑝)) ↔ ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
8281rexbidva 3162 . 2 ((𝐴 No ∧ 0s ≤s 𝐴) → (∃𝑝 ∈ ℕ0s𝑧 ∈ ℤs 𝐴 = (𝑧 /su (2ss𝑝)) ↔ ∃𝑝 ∈ ℕ0s𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
83 elzs12 28389 . . 3 (𝐴 ∈ ℤs[1/2] ↔ ∃𝑧 ∈ ℤs𝑝 ∈ ℕ0s 𝐴 = (𝑧 /su (2ss𝑝)))
84 rexcom 3271 . . 3 (∃𝑧 ∈ ℤs𝑝 ∈ ℕ0s 𝐴 = (𝑧 /su (2ss𝑝)) ↔ ∃𝑝 ∈ ℕ0s𝑧 ∈ ℤs 𝐴 = (𝑧 /su (2ss𝑝)))
8583, 84bitri 275 . 2 (𝐴 ∈ ℤs[1/2] ↔ ∃𝑝 ∈ ℕ0s𝑧 ∈ ℤs 𝐴 = (𝑧 /su (2ss𝑝)))
86 rexcom 3271 . . . 4 (∃𝑦 ∈ ℕ0s𝑝 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)) ↔ ∃𝑝 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)))
8786rexbii 3083 . . 3 (∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s𝑝 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)) ↔ ∃𝑥 ∈ ℕ0s𝑝 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)))
88 rexcom 3271 . . 3 (∃𝑥 ∈ ℕ0s𝑝 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)) ↔ ∃𝑝 ∈ ℕ0s𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)))
8987, 88bitri 275 . 2 (∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s𝑝 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)) ↔ ∃𝑝 ∈ ℕ0s𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)))
9082, 85, 893bitr4g 314 1 ((𝐴 No ∧ 0s ≤s 𝐴) → (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s𝑝 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060   class class class wbr 5119  (class class class)co 7405   No csur 27603   <s cslt 27604   ≤s csle 27708   0s c0s 27786   +s cadds 27918   ·s cmuls 28061   /su cdivs 28142  0scnn0s 28258  scnns 28259  sczs 28318  2sc2s 28348  scexps 28350  s[1/2]czs12 28352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-norec2 27908  df-adds 27919  df-negs 27979  df-subs 27980  df-muls 28062  df-divs 28143  df-seqs 28230  df-n0s 28260  df-nns 28261  df-zs 28319  df-2s 28349  df-exps 28351  df-zs12 28353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator