MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zs12ge0 Structured version   Visualization version   GIF version

Theorem zs12ge0 28349
Description: An expression for non-negative dyadic rationals. (Contributed by Scott Fenton, 8-Nov-2025.)
Assertion
Ref Expression
zs12ge0 ((𝐴 No ∧ 0s ≤s 𝐴) → (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s𝑝 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
Distinct variable group:   𝑥,𝐴,𝑦,𝑝

Proof of Theorem zs12ge0
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . . . . 7 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → 𝑧 ∈ ℤs)
2 simpllr 775 . . . . . . . . 9 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → 0s ≤s 𝐴)
3 simprr 772 . . . . . . . . 9 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → 𝐴 = (𝑧 /su (2ss𝑝)))
42, 3breqtrd 5136 . . . . . . . 8 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → 0s ≤s (𝑧 /su (2ss𝑝)))
51znod 28278 . . . . . . . . 9 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → 𝑧 No )
6 simplr 768 . . . . . . . . 9 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → 𝑝 ∈ ℕ0s)
75, 6pw2ge0divsd 28336 . . . . . . . 8 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → ( 0s ≤s 𝑧 ↔ 0s ≤s (𝑧 /su (2ss𝑝))))
84, 7mpbird 257 . . . . . . 7 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → 0s ≤s 𝑧)
9 eln0zs 28295 . . . . . . 7 (𝑧 ∈ ℕ0s ↔ (𝑧 ∈ ℤs ∧ 0s ≤s 𝑧))
101, 8, 9sylanbrc 583 . . . . . 6 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → 𝑧 ∈ ℕ0s)
11 simpr 484 . . . . . . . . . . . 12 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) → 𝑧 ∈ ℕ0s)
12 2nns 28311 . . . . . . . . . . . . 13 2s ∈ ℕs
13 simplr 768 . . . . . . . . . . . . 13 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) → 𝑝 ∈ ℕ0s)
14 nnexpscl 28326 . . . . . . . . . . . . 13 ((2s ∈ ℕs𝑝 ∈ ℕ0s) → (2ss𝑝) ∈ ℕs)
1512, 13, 14sylancr 587 . . . . . . . . . . . 12 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) → (2ss𝑝) ∈ ℕs)
16 eucliddivs 28272 . . . . . . . . . . . 12 ((𝑧 ∈ ℕ0s ∧ (2ss𝑝) ∈ ℕs) → ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝑧 = (((2ss𝑝) ·s 𝑥) +s 𝑦) ∧ 𝑦 <s (2ss𝑝)))
1711, 15, 16syl2anc 584 . . . . . . . . . . 11 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) → ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝑧 = (((2ss𝑝) ·s 𝑥) +s 𝑦) ∧ 𝑦 <s (2ss𝑝)))
18 2sno 28312 . . . . . . . . . . . . . . . . . . 19 2s No
19 simpllr 775 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑝 ∈ ℕ0s)
20 expscl 28324 . . . . . . . . . . . . . . . . . . 19 ((2s No 𝑝 ∈ ℕ0s) → (2ss𝑝) ∈ No )
2118, 19, 20sylancr 587 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (2ss𝑝) ∈ No )
22 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑥 ∈ ℕ0s)
2322n0snod 28225 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑥 No )
24 simprr 772 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑦 ∈ ℕ0s)
2524n0snod 28225 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑦 No )
2625, 19pw2divscld 28331 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (𝑦 /su (2ss𝑝)) ∈ No )
2721, 23, 26addsdid 28066 . . . . . . . . . . . . . . . . 17 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ((2ss𝑝) ·s (𝑥 +s (𝑦 /su (2ss𝑝)))) = (((2ss𝑝) ·s 𝑥) +s ((2ss𝑝) ·s (𝑦 /su (2ss𝑝)))))
2825, 19pw2divscan2d 28334 . . . . . . . . . . . . . . . . . 18 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ((2ss𝑝) ·s (𝑦 /su (2ss𝑝))) = 𝑦)
2928oveq2d 7406 . . . . . . . . . . . . . . . . 17 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (((2ss𝑝) ·s 𝑥) +s ((2ss𝑝) ·s (𝑦 /su (2ss𝑝)))) = (((2ss𝑝) ·s 𝑥) +s 𝑦))
3027, 29eqtrd 2765 . . . . . . . . . . . . . . . 16 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ((2ss𝑝) ·s (𝑥 +s (𝑦 /su (2ss𝑝)))) = (((2ss𝑝) ·s 𝑥) +s 𝑦))
3130eqeq2d 2741 . . . . . . . . . . . . . . 15 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (𝑧 = ((2ss𝑝) ·s (𝑥 +s (𝑦 /su (2ss𝑝)))) ↔ 𝑧 = (((2ss𝑝) ·s 𝑥) +s 𝑦)))
32 eqcom 2737 . . . . . . . . . . . . . . 15 (𝑧 = ((2ss𝑝) ·s (𝑥 +s (𝑦 /su (2ss𝑝)))) ↔ ((2ss𝑝) ·s (𝑥 +s (𝑦 /su (2ss𝑝)))) = 𝑧)
3331, 32bitr3di 286 . . . . . . . . . . . . . 14 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (𝑧 = (((2ss𝑝) ·s 𝑥) +s 𝑦) ↔ ((2ss𝑝) ·s (𝑥 +s (𝑦 /su (2ss𝑝)))) = 𝑧))
34 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑧 ∈ ℕ0s)
3534n0snod 28225 . . . . . . . . . . . . . . 15 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑧 No )
3623, 26addscld 27894 . . . . . . . . . . . . . . 15 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (𝑥 +s (𝑦 /su (2ss𝑝))) ∈ No )
3735, 36, 19pw2divsmuld 28332 . . . . . . . . . . . . . 14 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ((𝑧 /su (2ss𝑝)) = (𝑥 +s (𝑦 /su (2ss𝑝))) ↔ ((2ss𝑝) ·s (𝑥 +s (𝑦 /su (2ss𝑝)))) = 𝑧))
3833, 37bitr4d 282 . . . . . . . . . . . . 13 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (𝑧 = (((2ss𝑝) ·s 𝑥) +s 𝑦) ↔ (𝑧 /su (2ss𝑝)) = (𝑥 +s (𝑦 /su (2ss𝑝)))))
3938anbi1d 631 . . . . . . . . . . . 12 (((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ((𝑧 = (((2ss𝑝) ·s 𝑥) +s 𝑦) ∧ 𝑦 <s (2ss𝑝)) ↔ ((𝑧 /su (2ss𝑝)) = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
40392rexbidva 3201 . . . . . . . . . . 11 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) → (∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝑧 = (((2ss𝑝) ·s 𝑥) +s 𝑦) ∧ 𝑦 <s (2ss𝑝)) ↔ ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s ((𝑧 /su (2ss𝑝)) = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
4117, 40mpbid 232 . . . . . . . . . 10 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝑧 ∈ ℕ0s) → ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s ((𝑧 /su (2ss𝑝)) = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)))
4241adantrl 716 . . . . . . . . 9 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝐴 = (𝑧 /su (2ss𝑝)) ∧ 𝑧 ∈ ℕ0s)) → ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s ((𝑧 /su (2ss𝑝)) = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)))
43 simprl 770 . . . . . . . . . . . 12 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝐴 = (𝑧 /su (2ss𝑝)) ∧ 𝑧 ∈ ℕ0s)) → 𝐴 = (𝑧 /su (2ss𝑝)))
4443eqeq1d 2732 . . . . . . . . . . 11 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝐴 = (𝑧 /su (2ss𝑝)) ∧ 𝑧 ∈ ℕ0s)) → (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ↔ (𝑧 /su (2ss𝑝)) = (𝑥 +s (𝑦 /su (2ss𝑝)))))
4544anbi1d 631 . . . . . . . . . 10 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝐴 = (𝑧 /su (2ss𝑝)) ∧ 𝑧 ∈ ℕ0s)) → ((𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)) ↔ ((𝑧 /su (2ss𝑝)) = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
46452rexbidv 3203 . . . . . . . . 9 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝐴 = (𝑧 /su (2ss𝑝)) ∧ 𝑧 ∈ ℕ0s)) → (∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)) ↔ ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s ((𝑧 /su (2ss𝑝)) = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
4742, 46mpbird 257 . . . . . . . 8 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝐴 = (𝑧 /su (2ss𝑝)) ∧ 𝑧 ∈ ℕ0s)) → ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)))
4847expr 456 . . . . . . 7 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ 𝐴 = (𝑧 /su (2ss𝑝))) → (𝑧 ∈ ℕ0s → ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
4948adantrl 716 . . . . . 6 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → (𝑧 ∈ ℕ0s → ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
5010, 49mpd 15 . . . . 5 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑧 ∈ ℤs𝐴 = (𝑧 /su (2ss𝑝)))) → ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)))
5150rexlimdvaa 3136 . . . 4 (((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) → (∃𝑧 ∈ ℤs 𝐴 = (𝑧 /su (2ss𝑝)) → ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
52 oveq1 7397 . . . . . . . . 9 (𝑧 = (((2ss𝑝) ·s 𝑥) +s 𝑦) → (𝑧 /su (2ss𝑝)) = ((((2ss𝑝) ·s 𝑥) +s 𝑦) /su (2ss𝑝)))
5352eqeq2d 2741 . . . . . . . 8 (𝑧 = (((2ss𝑝) ·s 𝑥) +s 𝑦) → ((𝑥 +s (𝑦 /su (2ss𝑝))) = (𝑧 /su (2ss𝑝)) ↔ (𝑥 +s (𝑦 /su (2ss𝑝))) = ((((2ss𝑝) ·s 𝑥) +s 𝑦) /su (2ss𝑝))))
54 nnn0s 28227 . . . . . . . . . . . . 13 (2s ∈ ℕs → 2s ∈ ℕ0s)
5512, 54ax-mp 5 . . . . . . . . . . . 12 2s ∈ ℕ0s
56 simplr 768 . . . . . . . . . . . 12 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑝 ∈ ℕ0s)
57 n0expscl 28325 . . . . . . . . . . . 12 ((2s ∈ ℕ0s𝑝 ∈ ℕ0s) → (2ss𝑝) ∈ ℕ0s)
5855, 56, 57sylancr 587 . . . . . . . . . . 11 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (2ss𝑝) ∈ ℕ0s)
59 simprl 770 . . . . . . . . . . 11 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑥 ∈ ℕ0s)
60 n0mulscl 28244 . . . . . . . . . . 11 (((2ss𝑝) ∈ ℕ0s𝑥 ∈ ℕ0s) → ((2ss𝑝) ·s 𝑥) ∈ ℕ0s)
6158, 59, 60syl2anc 584 . . . . . . . . . 10 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ((2ss𝑝) ·s 𝑥) ∈ ℕ0s)
62 simprr 772 . . . . . . . . . 10 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑦 ∈ ℕ0s)
63 n0addscl 28243 . . . . . . . . . 10 ((((2ss𝑝) ·s 𝑥) ∈ ℕ0s𝑦 ∈ ℕ0s) → (((2ss𝑝) ·s 𝑥) +s 𝑦) ∈ ℕ0s)
6461, 62, 63syl2anc 584 . . . . . . . . 9 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (((2ss𝑝) ·s 𝑥) +s 𝑦) ∈ ℕ0s)
6564n0zsd 28285 . . . . . . . 8 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (((2ss𝑝) ·s 𝑥) +s 𝑦) ∈ ℤs)
6659n0snod 28225 . . . . . . . . . . . 12 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑥 No )
6766, 56pw2divscan3d 28333 . . . . . . . . . . 11 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (((2ss𝑝) ·s 𝑥) /su (2ss𝑝)) = 𝑥)
6867eqcomd 2736 . . . . . . . . . 10 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑥 = (((2ss𝑝) ·s 𝑥) /su (2ss𝑝)))
6968oveq1d 7405 . . . . . . . . 9 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (𝑥 +s (𝑦 /su (2ss𝑝))) = ((((2ss𝑝) ·s 𝑥) /su (2ss𝑝)) +s (𝑦 /su (2ss𝑝))))
7018, 56, 20sylancr 587 . . . . . . . . . . 11 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (2ss𝑝) ∈ No )
7170, 66mulscld 28045 . . . . . . . . . 10 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ((2ss𝑝) ·s 𝑥) ∈ No )
7262n0snod 28225 . . . . . . . . . 10 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → 𝑦 No )
7371, 72, 56pw2divsdird 28338 . . . . . . . . 9 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ((((2ss𝑝) ·s 𝑥) +s 𝑦) /su (2ss𝑝)) = ((((2ss𝑝) ·s 𝑥) /su (2ss𝑝)) +s (𝑦 /su (2ss𝑝))))
7469, 73eqtr4d 2768 . . . . . . . 8 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (𝑥 +s (𝑦 /su (2ss𝑝))) = ((((2ss𝑝) ·s 𝑥) +s 𝑦) /su (2ss𝑝)))
7553, 65, 74rspcedvdw 3594 . . . . . . 7 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ∃𝑧 ∈ ℤs (𝑥 +s (𝑦 /su (2ss𝑝))) = (𝑧 /su (2ss𝑝)))
76 eqeq1 2734 . . . . . . . 8 (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) → (𝐴 = (𝑧 /su (2ss𝑝)) ↔ (𝑥 +s (𝑦 /su (2ss𝑝))) = (𝑧 /su (2ss𝑝))))
7776rexbidv 3158 . . . . . . 7 (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) → (∃𝑧 ∈ ℤs 𝐴 = (𝑧 /su (2ss𝑝)) ↔ ∃𝑧 ∈ ℤs (𝑥 +s (𝑦 /su (2ss𝑝))) = (𝑧 /su (2ss𝑝))))
7875, 77syl5ibrcom 247 . . . . . 6 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) → ∃𝑧 ∈ ℤs 𝐴 = (𝑧 /su (2ss𝑝))))
7978adantrd 491 . . . . 5 ((((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) ∧ (𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s)) → ((𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)) → ∃𝑧 ∈ ℤs 𝐴 = (𝑧 /su (2ss𝑝))))
8079rexlimdvva 3195 . . . 4 (((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) → (∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)) → ∃𝑧 ∈ ℤs 𝐴 = (𝑧 /su (2ss𝑝))))
8151, 80impbid 212 . . 3 (((𝐴 No ∧ 0s ≤s 𝐴) ∧ 𝑝 ∈ ℕ0s) → (∃𝑧 ∈ ℤs 𝐴 = (𝑧 /su (2ss𝑝)) ↔ ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
8281rexbidva 3156 . 2 ((𝐴 No ∧ 0s ≤s 𝐴) → (∃𝑝 ∈ ℕ0s𝑧 ∈ ℤs 𝐴 = (𝑧 /su (2ss𝑝)) ↔ ∃𝑝 ∈ ℕ0s𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
83 elzs12 28344 . . 3 (𝐴 ∈ ℤs[1/2] ↔ ∃𝑧 ∈ ℤs𝑝 ∈ ℕ0s 𝐴 = (𝑧 /su (2ss𝑝)))
84 rexcom 3267 . . 3 (∃𝑧 ∈ ℤs𝑝 ∈ ℕ0s 𝐴 = (𝑧 /su (2ss𝑝)) ↔ ∃𝑝 ∈ ℕ0s𝑧 ∈ ℤs 𝐴 = (𝑧 /su (2ss𝑝)))
8583, 84bitri 275 . 2 (𝐴 ∈ ℤs[1/2] ↔ ∃𝑝 ∈ ℕ0s𝑧 ∈ ℤs 𝐴 = (𝑧 /su (2ss𝑝)))
86 rexcom 3267 . . . 4 (∃𝑦 ∈ ℕ0s𝑝 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)) ↔ ∃𝑝 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)))
8786rexbii 3077 . . 3 (∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s𝑝 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)) ↔ ∃𝑥 ∈ ℕ0s𝑝 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)))
88 rexcom 3267 . . 3 (∃𝑥 ∈ ℕ0s𝑝 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)) ↔ ∃𝑝 ∈ ℕ0s𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)))
8987, 88bitri 275 . 2 (∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s𝑝 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)) ↔ ∃𝑝 ∈ ℕ0s𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝)))
9082, 85, 893bitr4g 314 1 ((𝐴 No ∧ 0s ≤s 𝐴) → (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℕ0s𝑦 ∈ ℕ0s𝑝 ∈ ℕ0s (𝐴 = (𝑥 +s (𝑦 /su (2ss𝑝))) ∧ 𝑦 <s (2ss𝑝))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054   class class class wbr 5110  (class class class)co 7390   No csur 27558   <s cslt 27559   ≤s csle 27663   0s c0s 27741   +s cadds 27873   ·s cmuls 28016   /su cdivs 28097  0scnn0s 28213  scnns 28214  sczs 28273  2sc2s 28303  scexps 28305  s[1/2]czs12 28307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-muls 28017  df-divs 28098  df-seqs 28185  df-n0s 28215  df-nns 28216  df-zs 28274  df-2s 28304  df-exps 28306  df-zs12 28308
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator