MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zseo Structured version   Visualization version   GIF version

Theorem zseo 28407
Description: A surreal integer is either even or odd. (Contributed by Scott Fenton, 19-Aug-2025.)
Assertion
Ref Expression
zseo (𝑁 ∈ ℤs → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s )))
Distinct variable group:   𝑥,𝑁

Proof of Theorem zseo
Dummy variables 𝑦 𝑧 𝑤 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzs 28371 . 2 (𝑁 ∈ ℤs ↔ ∃𝑦 ∈ ℕs𝑧 ∈ ℕs 𝑁 = (𝑦 -s 𝑧))
2 nnn0s 28333 . . . . . 6 (𝑦 ∈ ℕs𝑦 ∈ ℕ0s)
3 n0seo 28406 . . . . . 6 (𝑦 ∈ ℕ0s → (∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∨ ∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s )))
42, 3syl 17 . . . . 5 (𝑦 ∈ ℕs → (∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∨ ∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s )))
5 nnn0s 28333 . . . . . 6 (𝑧 ∈ ℕs𝑧 ∈ ℕ0s)
6 n0seo 28406 . . . . . 6 (𝑧 ∈ ℕ0s → (∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )))
75, 6syl 17 . . . . 5 (𝑧 ∈ ℕs → (∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )))
8 reeanv 3228 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) ↔ (∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)))
9 n0zs 28376 . . . . . . . . . . . . 13 (𝑤 ∈ ℕ0s𝑤 ∈ ℤs)
109adantr 480 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 𝑤 ∈ ℤs)
11 n0zs 28376 . . . . . . . . . . . . 13 (𝑡 ∈ ℕ0s𝑡 ∈ ℤs)
1211adantl 481 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 𝑡 ∈ ℤs)
1310, 12zsubscld 28383 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (𝑤 -s 𝑡) ∈ ℤs)
14 2sno 28404 . . . . . . . . . . . . . 14 2s No
1514a1i 11 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 2s No )
16 n0sno 28329 . . . . . . . . . . . . . 14 (𝑤 ∈ ℕ0s𝑤 No )
1716adantr 480 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 𝑤 No )
18 n0sno 28329 . . . . . . . . . . . . . 14 (𝑡 ∈ ℕ0s𝑡 No )
1918adantl 481 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 𝑡 No )
2015, 17, 19subsdid 28185 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s (𝑤 -s 𝑡)) = ((2s ·s 𝑤) -s (2s ·s 𝑡)))
2120eqcomd 2742 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s (𝑤 -s 𝑡)))
22 oveq2 7440 . . . . . . . . . . . 12 (𝑥 = (𝑤 -s 𝑡) → (2s ·s 𝑥) = (2s ·s (𝑤 -s 𝑡)))
2322rspceeqv 3644 . . . . . . . . . . 11 (((𝑤 -s 𝑡) ∈ ℤs ∧ ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s (𝑤 -s 𝑡))) → ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s 𝑥))
2413, 21, 23syl2anc 584 . . . . . . . . . 10 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s 𝑥))
25 oveq12 7441 . . . . . . . . . . . 12 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → (𝑦 -s 𝑧) = ((2s ·s 𝑤) -s (2s ·s 𝑡)))
2625eqeq1d 2738 . . . . . . . . . . 11 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → ((𝑦 -s 𝑧) = (2s ·s 𝑥) ↔ ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s 𝑥)))
2726rexbidv 3178 . . . . . . . . . 10 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s 𝑥)))
2824, 27syl5ibrcom 247 . . . . . . . . 9 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥)))
2928rexlimivv 3200 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥))
308, 29sylbir 235 . . . . . . 7 ((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥))
3130orcd 873 . . . . . 6 ((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
32 reeanv 3228 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) ↔ (∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)))
3315, 17mulscld 28162 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s 𝑤) ∈ No )
34 1sno 27873 . . . . . . . . . . . . . 14 1s No
3534a1i 11 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 1s No )
3615, 19mulscld 28162 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s 𝑡) ∈ No )
3733, 35, 36addsubsd 28113 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 1s ))
3821oveq1d 7447 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s 1s ))
3937, 38eqtrd 2776 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s (𝑤 -s 𝑡)) +s 1s ))
4022oveq1d 7447 . . . . . . . . . . . 12 (𝑥 = (𝑤 -s 𝑡) → ((2s ·s 𝑥) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s 1s ))
4140rspceeqv 3644 . . . . . . . . . . 11 (((𝑤 -s 𝑡) ∈ ℤs ∧ (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s (𝑤 -s 𝑡)) +s 1s )) → ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s 𝑥) +s 1s ))
4213, 39, 41syl2anc 584 . . . . . . . . . 10 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s 𝑥) +s 1s ))
43 oveq12 7441 . . . . . . . . . . . 12 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → (𝑦 -s 𝑧) = (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)))
4443eqeq1d 2738 . . . . . . . . . . 11 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → ((𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ) ↔ (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s 𝑥) +s 1s )))
4544rexbidv 3178 . . . . . . . . . 10 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s 𝑥) +s 1s )))
4642, 45syl5ibrcom 247 . . . . . . . . 9 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
4746rexlimivv 3200 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))
4832, 47sylbir 235 . . . . . . 7 ((∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))
4948olcd 874 . . . . . 6 ((∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
50 reeanv 3228 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) ↔ (∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )))
51 1zs 28378 . . . . . . . . . . . . 13 1s ∈ ℤs
5251a1i 11 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 1s ∈ ℤs)
5313, 52zsubscld 28383 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑤 -s 𝑡) -s 1s ) ∈ ℤs)
5413znod 28370 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (𝑤 -s 𝑡) ∈ No )
5515, 54, 35subsdid 28185 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s ((𝑤 -s 𝑡) -s 1s )) = ((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )))
5655oveq1d 7447 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s ) = (((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )) +s 1s ))
57 mulsrid 28140 . . . . . . . . . . . . . . . . 17 (2s No → (2s ·s 1s ) = 2s)
5814, 57ax-mp 5 . . . . . . . . . . . . . . . 16 (2s ·s 1s ) = 2s
5958oveq2i 7443 . . . . . . . . . . . . . . 15 ((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )) = ((2s ·s (𝑤 -s 𝑡)) -s 2s)
6059oveq1i 7442 . . . . . . . . . . . . . 14 (((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )) +s 1s ) = (((2s ·s (𝑤 -s 𝑡)) -s 2s) +s 1s )
6115, 54mulscld 28162 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s (𝑤 -s 𝑡)) ∈ No )
6261, 35, 15addsubsd 28113 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s (𝑤 -s 𝑡)) +s 1s ) -s 2s) = (((2s ·s (𝑤 -s 𝑡)) -s 2s) +s 1s ))
6361, 35, 15addsubsassd 28112 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s (𝑤 -s 𝑡)) +s 1s ) -s 2s) = ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)))
6462, 63eqtr3d 2778 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s (𝑤 -s 𝑡)) -s 2s) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)))
6560, 64eqtrid 2788 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)))
6656, 65eqtrd 2776 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)))
67 subscl 28093 . . . . . . . . . . . . . . . . . 18 (( 1s No ∧ 2s No ) → ( 1s -s 2s) ∈ No )
6834, 14, 67mp2an 692 . . . . . . . . . . . . . . . . 17 ( 1s -s 2s) ∈ No
69 negnegs 28077 . . . . . . . . . . . . . . . . 17 (( 1s -s 2s) ∈ No → ( -us ‘( -us ‘( 1s -s 2s))) = ( 1s -s 2s))
7068, 69ax-mp 5 . . . . . . . . . . . . . . . 16 ( -us ‘( -us ‘( 1s -s 2s))) = ( 1s -s 2s)
7134a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 1s No )
7214a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 2s No )
7371, 72negsubsdi2d 28111 . . . . . . . . . . . . . . . . . . 19 (⊤ → ( -us ‘( 1s -s 2s)) = (2s -s 1s ))
7473mptru 1546 . . . . . . . . . . . . . . . . . 18 ( -us ‘( 1s -s 2s)) = (2s -s 1s )
75 1p1e2s 28401 . . . . . . . . . . . . . . . . . . 19 ( 1s +s 1s ) = 2s
76 subadds 28101 . . . . . . . . . . . . . . . . . . . 20 ((2s No ∧ 1s No ∧ 1s No ) → ((2s -s 1s ) = 1s ↔ ( 1s +s 1s ) = 2s))
7714, 34, 34, 76mp3an 1462 . . . . . . . . . . . . . . . . . . 19 ((2s -s 1s ) = 1s ↔ ( 1s +s 1s ) = 2s)
7875, 77mpbir 231 . . . . . . . . . . . . . . . . . 18 (2s -s 1s ) = 1s
7974, 78eqtri 2764 . . . . . . . . . . . . . . . . 17 ( -us ‘( 1s -s 2s)) = 1s
8079fveq2i 6908 . . . . . . . . . . . . . . . 16 ( -us ‘( -us ‘( 1s -s 2s))) = ( -us ‘ 1s )
8170, 80eqtr3i 2766 . . . . . . . . . . . . . . 15 ( 1s -s 2s) = ( -us ‘ 1s )
8281oveq2i 7443 . . . . . . . . . . . . . 14 ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)) = ((2s ·s (𝑤 -s 𝑡)) +s ( -us ‘ 1s ))
8361, 35subsvald 28092 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s (𝑤 -s 𝑡)) -s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s ( -us ‘ 1s )))
8482, 83eqtr4id 2795 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)) = ((2s ·s (𝑤 -s 𝑡)) -s 1s ))
8520oveq1d 7447 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s (𝑤 -s 𝑡)) -s 1s ) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) -s 1s ))
8684, 85eqtrd 2776 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) -s 1s ))
8733, 36, 35subsubs4d 28125 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) -s 1s ) = ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )))
8866, 86, 873eqtrrd 2781 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s ))
89 oveq2 7440 . . . . . . . . . . . . 13 (𝑥 = ((𝑤 -s 𝑡) -s 1s ) → (2s ·s 𝑥) = (2s ·s ((𝑤 -s 𝑡) -s 1s )))
9089oveq1d 7447 . . . . . . . . . . . 12 (𝑥 = ((𝑤 -s 𝑡) -s 1s ) → ((2s ·s 𝑥) +s 1s ) = ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s ))
9190rspceeqv 3644 . . . . . . . . . . 11 ((((𝑤 -s 𝑡) -s 1s ) ∈ ℤs ∧ ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s )) → ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s 𝑥) +s 1s ))
9253, 88, 91syl2anc 584 . . . . . . . . . 10 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s 𝑥) +s 1s ))
93 oveq12 7441 . . . . . . . . . . . 12 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → (𝑦 -s 𝑧) = ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )))
9493eqeq1d 2738 . . . . . . . . . . 11 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ((𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ) ↔ ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s 𝑥) +s 1s )))
9594rexbidv 3178 . . . . . . . . . 10 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s 𝑥) +s 1s )))
9692, 95syl5ibrcom 247 . . . . . . . . 9 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
9796rexlimivv 3200 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))
9850, 97sylbir 235 . . . . . . 7 ((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))
9998olcd 874 . . . . . 6 ((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
100 reeanv 3228 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) ↔ (∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )))
10133, 35, 36, 35addsubs4d 28131 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s ( 1s -s 1s )))
102 subsid 28100 . . . . . . . . . . . . . . 15 ( 1s No → ( 1s -s 1s ) = 0s )
10334, 102ax-mp 5 . . . . . . . . . . . . . 14 ( 1s -s 1s ) = 0s
104103oveq2i 7443 . . . . . . . . . . . . 13 (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s ( 1s -s 1s )) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 0s )
10533, 36subscld 28094 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s 𝑤) -s (2s ·s 𝑡)) ∈ No )
106105addsridd 27999 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 0s ) = ((2s ·s 𝑤) -s (2s ·s 𝑡)))
107106, 21eqtrd 2776 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 0s ) = (2s ·s (𝑤 -s 𝑡)))
108104, 107eqtrid 2788 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s ( 1s -s 1s )) = (2s ·s (𝑤 -s 𝑡)))
109101, 108eqtrd 2776 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s (𝑤 -s 𝑡)))
11022rspceeqv 3644 . . . . . . . . . . 11 (((𝑤 -s 𝑡) ∈ ℤs ∧ (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s (𝑤 -s 𝑡))) → ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s 𝑥))
11113, 109, 110syl2anc 584 . . . . . . . . . 10 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s 𝑥))
112 oveq12 7441 . . . . . . . . . . . 12 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → (𝑦 -s 𝑧) = (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )))
113112eqeq1d 2738 . . . . . . . . . . 11 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ((𝑦 -s 𝑧) = (2s ·s 𝑥) ↔ (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s 𝑥)))
114113rexbidv 3178 . . . . . . . . . 10 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s 𝑥)))
115111, 114syl5ibrcom 247 . . . . . . . . 9 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥)))
116115rexlimivv 3200 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥))
117100, 116sylbir 235 . . . . . . 7 ((∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥))
118117orcd 873 . . . . . 6 ((∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
11931, 49, 99, 118ccase 1037 . . . . 5 (((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∨ ∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s )) ∧ (∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s ))) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
1204, 7, 119syl2an 596 . . . 4 ((𝑦 ∈ ℕs𝑧 ∈ ℕs) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
121 eqeq1 2740 . . . . . 6 (𝑁 = (𝑦 -s 𝑧) → (𝑁 = (2s ·s 𝑥) ↔ (𝑦 -s 𝑧) = (2s ·s 𝑥)))
122121rexbidv 3178 . . . . 5 (𝑁 = (𝑦 -s 𝑧) → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥)))
123 eqeq1 2740 . . . . . 6 (𝑁 = (𝑦 -s 𝑧) → (𝑁 = ((2s ·s 𝑥) +s 1s ) ↔ (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
124123rexbidv 3178 . . . . 5 (𝑁 = (𝑦 -s 𝑧) → (∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
125122, 124orbi12d 918 . . . 4 (𝑁 = (𝑦 -s 𝑧) → ((∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))))
126120, 125syl5ibrcom 247 . . 3 ((𝑦 ∈ ℕs𝑧 ∈ ℕs) → (𝑁 = (𝑦 -s 𝑧) → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s ))))
127126rexlimivv 3200 . 2 (∃𝑦 ∈ ℕs𝑧 ∈ ℕs 𝑁 = (𝑦 -s 𝑧) → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s )))
1281, 127sylbi 217 1 (𝑁 ∈ ℤs → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wtru 1540  wcel 2107  wrex 3069  cfv 6560  (class class class)co 7432   No csur 27685   0s c0s 27868   1s c1s 27869   +s cadds 27993   -us cnegs 28052   -s csubs 28053   ·s cmuls 28133  0scnn0s 28319  scnns 28320  sczs 28365  2sc2s 28395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-nadd 8705  df-no 27688  df-slt 27689  df-bday 27690  df-sle 27791  df-sslt 27827  df-scut 27829  df-0s 27870  df-1s 27871  df-made 27887  df-old 27888  df-left 27890  df-right 27891  df-norec 27972  df-norec2 27983  df-adds 27994  df-negs 28054  df-subs 28055  df-muls 28134  df-n0s 28321  df-nns 28322  df-zs 28366  df-2s 28396
This theorem is referenced by:  zs12bday  28425
  Copyright terms: Public domain W3C validator