MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zseo Structured version   Visualization version   GIF version

Theorem zseo 28338
Description: A surreal integer is either even or odd. (Contributed by Scott Fenton, 19-Aug-2025.)
Assertion
Ref Expression
zseo (𝑁 ∈ ℤs → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s )))
Distinct variable group:   𝑥,𝑁

Proof of Theorem zseo
Dummy variables 𝑦 𝑧 𝑤 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzs 28301 . 2 (𝑁 ∈ ℤs ↔ ∃𝑦 ∈ ℕs𝑧 ∈ ℕs 𝑁 = (𝑦 -s 𝑧))
2 nnn0s 28249 . . . . . 6 (𝑦 ∈ ℕs𝑦 ∈ ℕ0s)
3 n0seo 28337 . . . . . 6 (𝑦 ∈ ℕ0s → (∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∨ ∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s )))
42, 3syl 17 . . . . 5 (𝑦 ∈ ℕs → (∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∨ ∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s )))
5 nnn0s 28249 . . . . . 6 (𝑧 ∈ ℕs𝑧 ∈ ℕ0s)
6 n0seo 28337 . . . . . 6 (𝑧 ∈ ℕ0s → (∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )))
75, 6syl 17 . . . . 5 (𝑧 ∈ ℕs → (∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )))
8 reeanv 3202 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) ↔ (∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)))
9 n0zs 28306 . . . . . . . . . . . . 13 (𝑤 ∈ ℕ0s𝑤 ∈ ℤs)
109adantr 480 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 𝑤 ∈ ℤs)
11 n0zs 28306 . . . . . . . . . . . . 13 (𝑡 ∈ ℕ0s𝑡 ∈ ℤs)
1211adantl 481 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 𝑡 ∈ ℤs)
1310, 12zsubscld 28313 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (𝑤 -s 𝑡) ∈ ℤs)
14 2sno 28335 . . . . . . . . . . . . . 14 2s No
1514a1i 11 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 2s No )
16 n0sno 28245 . . . . . . . . . . . . . 14 (𝑤 ∈ ℕ0s𝑤 No )
1716adantr 480 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 𝑤 No )
18 n0sno 28245 . . . . . . . . . . . . . 14 (𝑡 ∈ ℕ0s𝑡 No )
1918adantl 481 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 𝑡 No )
2015, 17, 19subsdid 28090 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s (𝑤 -s 𝑡)) = ((2s ·s 𝑤) -s (2s ·s 𝑡)))
2120eqcomd 2736 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s (𝑤 -s 𝑡)))
22 oveq2 7349 . . . . . . . . . . . 12 (𝑥 = (𝑤 -s 𝑡) → (2s ·s 𝑥) = (2s ·s (𝑤 -s 𝑡)))
2322rspceeqv 3598 . . . . . . . . . . 11 (((𝑤 -s 𝑡) ∈ ℤs ∧ ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s (𝑤 -s 𝑡))) → ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s 𝑥))
2413, 21, 23syl2anc 584 . . . . . . . . . 10 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s 𝑥))
25 oveq12 7350 . . . . . . . . . . . 12 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → (𝑦 -s 𝑧) = ((2s ·s 𝑤) -s (2s ·s 𝑡)))
2625eqeq1d 2732 . . . . . . . . . . 11 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → ((𝑦 -s 𝑧) = (2s ·s 𝑥) ↔ ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s 𝑥)))
2726rexbidv 3154 . . . . . . . . . 10 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s 𝑥)))
2824, 27syl5ibrcom 247 . . . . . . . . 9 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥)))
2928rexlimivv 3172 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥))
308, 29sylbir 235 . . . . . . 7 ((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥))
3130orcd 873 . . . . . 6 ((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
32 reeanv 3202 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) ↔ (∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)))
3315, 17mulscld 28067 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s 𝑤) ∈ No )
34 1sno 27764 . . . . . . . . . . . . . 14 1s No
3534a1i 11 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 1s No )
3615, 19mulscld 28067 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s 𝑡) ∈ No )
3733, 35, 36addsubsd 28015 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 1s ))
3821oveq1d 7356 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s 1s ))
3937, 38eqtrd 2765 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s (𝑤 -s 𝑡)) +s 1s ))
4022oveq1d 7356 . . . . . . . . . . . 12 (𝑥 = (𝑤 -s 𝑡) → ((2s ·s 𝑥) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s 1s ))
4140rspceeqv 3598 . . . . . . . . . . 11 (((𝑤 -s 𝑡) ∈ ℤs ∧ (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s (𝑤 -s 𝑡)) +s 1s )) → ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s 𝑥) +s 1s ))
4213, 39, 41syl2anc 584 . . . . . . . . . 10 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s 𝑥) +s 1s ))
43 oveq12 7350 . . . . . . . . . . . 12 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → (𝑦 -s 𝑧) = (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)))
4443eqeq1d 2732 . . . . . . . . . . 11 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → ((𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ) ↔ (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s 𝑥) +s 1s )))
4544rexbidv 3154 . . . . . . . . . 10 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s 𝑥) +s 1s )))
4642, 45syl5ibrcom 247 . . . . . . . . 9 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
4746rexlimivv 3172 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))
4832, 47sylbir 235 . . . . . . 7 ((∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))
4948olcd 874 . . . . . 6 ((∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
50 reeanv 3202 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) ↔ (∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )))
51 1zs 28308 . . . . . . . . . . . . 13 1s ∈ ℤs
5251a1i 11 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 1s ∈ ℤs)
5313, 52zsubscld 28313 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑤 -s 𝑡) -s 1s ) ∈ ℤs)
5413znod 28300 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (𝑤 -s 𝑡) ∈ No )
5515, 54, 35subsdid 28090 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s ((𝑤 -s 𝑡) -s 1s )) = ((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )))
5655oveq1d 7356 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s ) = (((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )) +s 1s ))
57 mulsrid 28045 . . . . . . . . . . . . . . . . 17 (2s No → (2s ·s 1s ) = 2s)
5814, 57ax-mp 5 . . . . . . . . . . . . . . . 16 (2s ·s 1s ) = 2s
5958oveq2i 7352 . . . . . . . . . . . . . . 15 ((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )) = ((2s ·s (𝑤 -s 𝑡)) -s 2s)
6059oveq1i 7351 . . . . . . . . . . . . . 14 (((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )) +s 1s ) = (((2s ·s (𝑤 -s 𝑡)) -s 2s) +s 1s )
6115, 54mulscld 28067 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s (𝑤 -s 𝑡)) ∈ No )
6261, 35, 15addsubsd 28015 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s (𝑤 -s 𝑡)) +s 1s ) -s 2s) = (((2s ·s (𝑤 -s 𝑡)) -s 2s) +s 1s ))
6361, 35, 15addsubsassd 28014 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s (𝑤 -s 𝑡)) +s 1s ) -s 2s) = ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)))
6462, 63eqtr3d 2767 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s (𝑤 -s 𝑡)) -s 2s) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)))
6560, 64eqtrid 2777 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)))
6656, 65eqtrd 2765 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)))
67 subscl 27995 . . . . . . . . . . . . . . . . . 18 (( 1s No ∧ 2s No ) → ( 1s -s 2s) ∈ No )
6834, 14, 67mp2an 692 . . . . . . . . . . . . . . . . 17 ( 1s -s 2s) ∈ No
69 negnegs 27979 . . . . . . . . . . . . . . . . 17 (( 1s -s 2s) ∈ No → ( -us ‘( -us ‘( 1s -s 2s))) = ( 1s -s 2s))
7068, 69ax-mp 5 . . . . . . . . . . . . . . . 16 ( -us ‘( -us ‘( 1s -s 2s))) = ( 1s -s 2s)
7134a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 1s No )
7214a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 2s No )
7371, 72negsubsdi2d 28013 . . . . . . . . . . . . . . . . . . 19 (⊤ → ( -us ‘( 1s -s 2s)) = (2s -s 1s ))
7473mptru 1548 . . . . . . . . . . . . . . . . . 18 ( -us ‘( 1s -s 2s)) = (2s -s 1s )
75 1p1e2s 28332 . . . . . . . . . . . . . . . . . . 19 ( 1s +s 1s ) = 2s
76 subadds 28003 . . . . . . . . . . . . . . . . . . . 20 ((2s No ∧ 1s No ∧ 1s No ) → ((2s -s 1s ) = 1s ↔ ( 1s +s 1s ) = 2s))
7714, 34, 34, 76mp3an 1463 . . . . . . . . . . . . . . . . . . 19 ((2s -s 1s ) = 1s ↔ ( 1s +s 1s ) = 2s)
7875, 77mpbir 231 . . . . . . . . . . . . . . . . . 18 (2s -s 1s ) = 1s
7974, 78eqtri 2753 . . . . . . . . . . . . . . . . 17 ( -us ‘( 1s -s 2s)) = 1s
8079fveq2i 6820 . . . . . . . . . . . . . . . 16 ( -us ‘( -us ‘( 1s -s 2s))) = ( -us ‘ 1s )
8170, 80eqtr3i 2755 . . . . . . . . . . . . . . 15 ( 1s -s 2s) = ( -us ‘ 1s )
8281oveq2i 7352 . . . . . . . . . . . . . 14 ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)) = ((2s ·s (𝑤 -s 𝑡)) +s ( -us ‘ 1s ))
8361, 35subsvald 27994 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s (𝑤 -s 𝑡)) -s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s ( -us ‘ 1s )))
8482, 83eqtr4id 2784 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)) = ((2s ·s (𝑤 -s 𝑡)) -s 1s ))
8520oveq1d 7356 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s (𝑤 -s 𝑡)) -s 1s ) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) -s 1s ))
8684, 85eqtrd 2765 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) -s 1s ))
8733, 36, 35subsubs4d 28027 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) -s 1s ) = ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )))
8866, 86, 873eqtrrd 2770 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s ))
89 oveq2 7349 . . . . . . . . . . . . 13 (𝑥 = ((𝑤 -s 𝑡) -s 1s ) → (2s ·s 𝑥) = (2s ·s ((𝑤 -s 𝑡) -s 1s )))
9089oveq1d 7356 . . . . . . . . . . . 12 (𝑥 = ((𝑤 -s 𝑡) -s 1s ) → ((2s ·s 𝑥) +s 1s ) = ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s ))
9190rspceeqv 3598 . . . . . . . . . . 11 ((((𝑤 -s 𝑡) -s 1s ) ∈ ℤs ∧ ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s )) → ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s 𝑥) +s 1s ))
9253, 88, 91syl2anc 584 . . . . . . . . . 10 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s 𝑥) +s 1s ))
93 oveq12 7350 . . . . . . . . . . . 12 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → (𝑦 -s 𝑧) = ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )))
9493eqeq1d 2732 . . . . . . . . . . 11 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ((𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ) ↔ ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s 𝑥) +s 1s )))
9594rexbidv 3154 . . . . . . . . . 10 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s 𝑥) +s 1s )))
9692, 95syl5ibrcom 247 . . . . . . . . 9 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
9796rexlimivv 3172 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))
9850, 97sylbir 235 . . . . . . 7 ((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))
9998olcd 874 . . . . . 6 ((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
100 reeanv 3202 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) ↔ (∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )))
10133, 35, 36, 35addsubs4d 28033 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s ( 1s -s 1s )))
102 subsid 28002 . . . . . . . . . . . . . . 15 ( 1s No → ( 1s -s 1s ) = 0s )
10334, 102ax-mp 5 . . . . . . . . . . . . . 14 ( 1s -s 1s ) = 0s
104103oveq2i 7352 . . . . . . . . . . . . 13 (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s ( 1s -s 1s )) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 0s )
10533, 36subscld 27996 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s 𝑤) -s (2s ·s 𝑡)) ∈ No )
106105addsridd 27901 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 0s ) = ((2s ·s 𝑤) -s (2s ·s 𝑡)))
107106, 21eqtrd 2765 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 0s ) = (2s ·s (𝑤 -s 𝑡)))
108104, 107eqtrid 2777 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s ( 1s -s 1s )) = (2s ·s (𝑤 -s 𝑡)))
109101, 108eqtrd 2765 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s (𝑤 -s 𝑡)))
11022rspceeqv 3598 . . . . . . . . . . 11 (((𝑤 -s 𝑡) ∈ ℤs ∧ (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s (𝑤 -s 𝑡))) → ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s 𝑥))
11113, 109, 110syl2anc 584 . . . . . . . . . 10 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s 𝑥))
112 oveq12 7350 . . . . . . . . . . . 12 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → (𝑦 -s 𝑧) = (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )))
113112eqeq1d 2732 . . . . . . . . . . 11 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ((𝑦 -s 𝑧) = (2s ·s 𝑥) ↔ (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s 𝑥)))
114113rexbidv 3154 . . . . . . . . . 10 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s 𝑥)))
115111, 114syl5ibrcom 247 . . . . . . . . 9 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥)))
116115rexlimivv 3172 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥))
117100, 116sylbir 235 . . . . . . 7 ((∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥))
118117orcd 873 . . . . . 6 ((∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
11931, 49, 99, 118ccase 1037 . . . . 5 (((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∨ ∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s )) ∧ (∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s ))) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
1204, 7, 119syl2an 596 . . . 4 ((𝑦 ∈ ℕs𝑧 ∈ ℕs) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
121 eqeq1 2734 . . . . . 6 (𝑁 = (𝑦 -s 𝑧) → (𝑁 = (2s ·s 𝑥) ↔ (𝑦 -s 𝑧) = (2s ·s 𝑥)))
122121rexbidv 3154 . . . . 5 (𝑁 = (𝑦 -s 𝑧) → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥)))
123 eqeq1 2734 . . . . . 6 (𝑁 = (𝑦 -s 𝑧) → (𝑁 = ((2s ·s 𝑥) +s 1s ) ↔ (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
124123rexbidv 3154 . . . . 5 (𝑁 = (𝑦 -s 𝑧) → (∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
125122, 124orbi12d 918 . . . 4 (𝑁 = (𝑦 -s 𝑧) → ((∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))))
126120, 125syl5ibrcom 247 . . 3 ((𝑦 ∈ ℕs𝑧 ∈ ℕs) → (𝑁 = (𝑦 -s 𝑧) → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s ))))
127126rexlimivv 3172 . 2 (∃𝑦 ∈ ℕs𝑧 ∈ ℕs 𝑁 = (𝑦 -s 𝑧) → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s )))
1281, 127sylbi 217 1 (𝑁 ∈ ℤs → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wtru 1542  wcel 2110  wrex 3054  cfv 6477  (class class class)co 7341   No csur 27571   0s c0s 27759   1s c1s 27760   +s cadds 27895   -us cnegs 27954   -s csubs 27955   ·s cmuls 28038  0scnn0s 28235  scnns 28236  sczs 28295  2sc2s 28326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-ot 4583  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-nadd 8576  df-no 27574  df-slt 27575  df-bday 27576  df-sle 27677  df-sslt 27714  df-scut 27716  df-0s 27761  df-1s 27762  df-made 27781  df-old 27782  df-left 27784  df-right 27785  df-norec 27874  df-norec2 27885  df-adds 27896  df-negs 27956  df-subs 27957  df-muls 28039  df-n0s 28237  df-nns 28238  df-zs 28296  df-2s 28327
This theorem is referenced by:  zs12zodd  28385  zs12bday  28387
  Copyright terms: Public domain W3C validator