MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zseo Structured version   Visualization version   GIF version

Theorem zseo 28421
Description: A surreal integer is either even or odd. (Contributed by Scott Fenton, 19-Aug-2025.)
Assertion
Ref Expression
zseo (𝑁 ∈ ℤs → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s )))
Distinct variable group:   𝑥,𝑁

Proof of Theorem zseo
Dummy variables 𝑦 𝑧 𝑤 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzs 28385 . 2 (𝑁 ∈ ℤs ↔ ∃𝑦 ∈ ℕs𝑧 ∈ ℕs 𝑁 = (𝑦 -s 𝑧))
2 nnn0s 28347 . . . . . 6 (𝑦 ∈ ℕs𝑦 ∈ ℕ0s)
3 n0seo 28420 . . . . . 6 (𝑦 ∈ ℕ0s → (∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∨ ∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s )))
42, 3syl 17 . . . . 5 (𝑦 ∈ ℕs → (∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∨ ∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s )))
5 nnn0s 28347 . . . . . 6 (𝑧 ∈ ℕs𝑧 ∈ ℕ0s)
6 n0seo 28420 . . . . . 6 (𝑧 ∈ ℕ0s → (∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )))
75, 6syl 17 . . . . 5 (𝑧 ∈ ℕs → (∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )))
8 reeanv 3227 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) ↔ (∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)))
9 n0zs 28390 . . . . . . . . . . . . 13 (𝑤 ∈ ℕ0s𝑤 ∈ ℤs)
109adantr 480 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 𝑤 ∈ ℤs)
11 n0zs 28390 . . . . . . . . . . . . 13 (𝑡 ∈ ℕ0s𝑡 ∈ ℤs)
1211adantl 481 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 𝑡 ∈ ℤs)
1310, 12zsubscld 28397 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (𝑤 -s 𝑡) ∈ ℤs)
14 2sno 28418 . . . . . . . . . . . . . 14 2s No
1514a1i 11 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 2s No )
16 n0sno 28343 . . . . . . . . . . . . . 14 (𝑤 ∈ ℕ0s𝑤 No )
1716adantr 480 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 𝑤 No )
18 n0sno 28343 . . . . . . . . . . . . . 14 (𝑡 ∈ ℕ0s𝑡 No )
1918adantl 481 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 𝑡 No )
2015, 17, 19subsdid 28199 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s (𝑤 -s 𝑡)) = ((2s ·s 𝑤) -s (2s ·s 𝑡)))
2120eqcomd 2741 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s (𝑤 -s 𝑡)))
22 oveq2 7439 . . . . . . . . . . . 12 (𝑥 = (𝑤 -s 𝑡) → (2s ·s 𝑥) = (2s ·s (𝑤 -s 𝑡)))
2322rspceeqv 3645 . . . . . . . . . . 11 (((𝑤 -s 𝑡) ∈ ℤs ∧ ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s (𝑤 -s 𝑡))) → ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s 𝑥))
2413, 21, 23syl2anc 584 . . . . . . . . . 10 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s 𝑥))
25 oveq12 7440 . . . . . . . . . . . 12 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → (𝑦 -s 𝑧) = ((2s ·s 𝑤) -s (2s ·s 𝑡)))
2625eqeq1d 2737 . . . . . . . . . . 11 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → ((𝑦 -s 𝑧) = (2s ·s 𝑥) ↔ ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s 𝑥)))
2726rexbidv 3177 . . . . . . . . . 10 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s 𝑥)))
2824, 27syl5ibrcom 247 . . . . . . . . 9 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥)))
2928rexlimivv 3199 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥))
308, 29sylbir 235 . . . . . . 7 ((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥))
3130orcd 873 . . . . . 6 ((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
32 reeanv 3227 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) ↔ (∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)))
3315, 17mulscld 28176 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s 𝑤) ∈ No )
34 1sno 27887 . . . . . . . . . . . . . 14 1s No
3534a1i 11 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 1s No )
3615, 19mulscld 28176 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s 𝑡) ∈ No )
3733, 35, 36addsubsd 28127 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 1s ))
3821oveq1d 7446 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s 1s ))
3937, 38eqtrd 2775 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s (𝑤 -s 𝑡)) +s 1s ))
4022oveq1d 7446 . . . . . . . . . . . 12 (𝑥 = (𝑤 -s 𝑡) → ((2s ·s 𝑥) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s 1s ))
4140rspceeqv 3645 . . . . . . . . . . 11 (((𝑤 -s 𝑡) ∈ ℤs ∧ (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s (𝑤 -s 𝑡)) +s 1s )) → ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s 𝑥) +s 1s ))
4213, 39, 41syl2anc 584 . . . . . . . . . 10 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s 𝑥) +s 1s ))
43 oveq12 7440 . . . . . . . . . . . 12 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → (𝑦 -s 𝑧) = (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)))
4443eqeq1d 2737 . . . . . . . . . . 11 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → ((𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ) ↔ (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s 𝑥) +s 1s )))
4544rexbidv 3177 . . . . . . . . . 10 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s 𝑥) +s 1s )))
4642, 45syl5ibrcom 247 . . . . . . . . 9 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
4746rexlimivv 3199 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))
4832, 47sylbir 235 . . . . . . 7 ((∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))
4948olcd 874 . . . . . 6 ((∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
50 reeanv 3227 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) ↔ (∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )))
51 1zs 28392 . . . . . . . . . . . . 13 1s ∈ ℤs
5251a1i 11 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 1s ∈ ℤs)
5313, 52zsubscld 28397 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑤 -s 𝑡) -s 1s ) ∈ ℤs)
5413znod 28384 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (𝑤 -s 𝑡) ∈ No )
5515, 54, 35subsdid 28199 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s ((𝑤 -s 𝑡) -s 1s )) = ((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )))
5655oveq1d 7446 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s ) = (((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )) +s 1s ))
57 mulsrid 28154 . . . . . . . . . . . . . . . . 17 (2s No → (2s ·s 1s ) = 2s)
5814, 57ax-mp 5 . . . . . . . . . . . . . . . 16 (2s ·s 1s ) = 2s
5958oveq2i 7442 . . . . . . . . . . . . . . 15 ((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )) = ((2s ·s (𝑤 -s 𝑡)) -s 2s)
6059oveq1i 7441 . . . . . . . . . . . . . 14 (((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )) +s 1s ) = (((2s ·s (𝑤 -s 𝑡)) -s 2s) +s 1s )
6115, 54mulscld 28176 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s (𝑤 -s 𝑡)) ∈ No )
6261, 35, 15addsubsd 28127 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s (𝑤 -s 𝑡)) +s 1s ) -s 2s) = (((2s ·s (𝑤 -s 𝑡)) -s 2s) +s 1s ))
6361, 35, 15addsubsassd 28126 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s (𝑤 -s 𝑡)) +s 1s ) -s 2s) = ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)))
6462, 63eqtr3d 2777 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s (𝑤 -s 𝑡)) -s 2s) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)))
6560, 64eqtrid 2787 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)))
6656, 65eqtrd 2775 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)))
67 subscl 28107 . . . . . . . . . . . . . . . . . 18 (( 1s No ∧ 2s No ) → ( 1s -s 2s) ∈ No )
6834, 14, 67mp2an 692 . . . . . . . . . . . . . . . . 17 ( 1s -s 2s) ∈ No
69 negnegs 28091 . . . . . . . . . . . . . . . . 17 (( 1s -s 2s) ∈ No → ( -us ‘( -us ‘( 1s -s 2s))) = ( 1s -s 2s))
7068, 69ax-mp 5 . . . . . . . . . . . . . . . 16 ( -us ‘( -us ‘( 1s -s 2s))) = ( 1s -s 2s)
7134a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 1s No )
7214a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 2s No )
7371, 72negsubsdi2d 28125 . . . . . . . . . . . . . . . . . . 19 (⊤ → ( -us ‘( 1s -s 2s)) = (2s -s 1s ))
7473mptru 1544 . . . . . . . . . . . . . . . . . 18 ( -us ‘( 1s -s 2s)) = (2s -s 1s )
75 1p1e2s 28415 . . . . . . . . . . . . . . . . . . 19 ( 1s +s 1s ) = 2s
76 subadds 28115 . . . . . . . . . . . . . . . . . . . 20 ((2s No ∧ 1s No ∧ 1s No ) → ((2s -s 1s ) = 1s ↔ ( 1s +s 1s ) = 2s))
7714, 34, 34, 76mp3an 1460 . . . . . . . . . . . . . . . . . . 19 ((2s -s 1s ) = 1s ↔ ( 1s +s 1s ) = 2s)
7875, 77mpbir 231 . . . . . . . . . . . . . . . . . 18 (2s -s 1s ) = 1s
7974, 78eqtri 2763 . . . . . . . . . . . . . . . . 17 ( -us ‘( 1s -s 2s)) = 1s
8079fveq2i 6910 . . . . . . . . . . . . . . . 16 ( -us ‘( -us ‘( 1s -s 2s))) = ( -us ‘ 1s )
8170, 80eqtr3i 2765 . . . . . . . . . . . . . . 15 ( 1s -s 2s) = ( -us ‘ 1s )
8281oveq2i 7442 . . . . . . . . . . . . . 14 ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)) = ((2s ·s (𝑤 -s 𝑡)) +s ( -us ‘ 1s ))
8361, 35subsvald 28106 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s (𝑤 -s 𝑡)) -s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s ( -us ‘ 1s )))
8482, 83eqtr4id 2794 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)) = ((2s ·s (𝑤 -s 𝑡)) -s 1s ))
8520oveq1d 7446 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s (𝑤 -s 𝑡)) -s 1s ) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) -s 1s ))
8684, 85eqtrd 2775 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) -s 1s ))
8733, 36, 35subsubs4d 28139 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) -s 1s ) = ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )))
8866, 86, 873eqtrrd 2780 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s ))
89 oveq2 7439 . . . . . . . . . . . . 13 (𝑥 = ((𝑤 -s 𝑡) -s 1s ) → (2s ·s 𝑥) = (2s ·s ((𝑤 -s 𝑡) -s 1s )))
9089oveq1d 7446 . . . . . . . . . . . 12 (𝑥 = ((𝑤 -s 𝑡) -s 1s ) → ((2s ·s 𝑥) +s 1s ) = ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s ))
9190rspceeqv 3645 . . . . . . . . . . 11 ((((𝑤 -s 𝑡) -s 1s ) ∈ ℤs ∧ ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s )) → ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s 𝑥) +s 1s ))
9253, 88, 91syl2anc 584 . . . . . . . . . 10 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s 𝑥) +s 1s ))
93 oveq12 7440 . . . . . . . . . . . 12 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → (𝑦 -s 𝑧) = ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )))
9493eqeq1d 2737 . . . . . . . . . . 11 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ((𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ) ↔ ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s 𝑥) +s 1s )))
9594rexbidv 3177 . . . . . . . . . 10 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s 𝑥) +s 1s )))
9692, 95syl5ibrcom 247 . . . . . . . . 9 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
9796rexlimivv 3199 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))
9850, 97sylbir 235 . . . . . . 7 ((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))
9998olcd 874 . . . . . 6 ((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
100 reeanv 3227 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) ↔ (∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )))
10133, 35, 36, 35addsubs4d 28145 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s ( 1s -s 1s )))
102 subsid 28114 . . . . . . . . . . . . . . 15 ( 1s No → ( 1s -s 1s ) = 0s )
10334, 102ax-mp 5 . . . . . . . . . . . . . 14 ( 1s -s 1s ) = 0s
104103oveq2i 7442 . . . . . . . . . . . . 13 (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s ( 1s -s 1s )) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 0s )
10533, 36subscld 28108 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s 𝑤) -s (2s ·s 𝑡)) ∈ No )
106105addsridd 28013 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 0s ) = ((2s ·s 𝑤) -s (2s ·s 𝑡)))
107106, 21eqtrd 2775 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 0s ) = (2s ·s (𝑤 -s 𝑡)))
108104, 107eqtrid 2787 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s ( 1s -s 1s )) = (2s ·s (𝑤 -s 𝑡)))
109101, 108eqtrd 2775 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s (𝑤 -s 𝑡)))
11022rspceeqv 3645 . . . . . . . . . . 11 (((𝑤 -s 𝑡) ∈ ℤs ∧ (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s (𝑤 -s 𝑡))) → ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s 𝑥))
11113, 109, 110syl2anc 584 . . . . . . . . . 10 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s 𝑥))
112 oveq12 7440 . . . . . . . . . . . 12 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → (𝑦 -s 𝑧) = (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )))
113112eqeq1d 2737 . . . . . . . . . . 11 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ((𝑦 -s 𝑧) = (2s ·s 𝑥) ↔ (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s 𝑥)))
114113rexbidv 3177 . . . . . . . . . 10 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s 𝑥)))
115111, 114syl5ibrcom 247 . . . . . . . . 9 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥)))
116115rexlimivv 3199 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥))
117100, 116sylbir 235 . . . . . . 7 ((∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥))
118117orcd 873 . . . . . 6 ((∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
11931, 49, 99, 118ccase 1037 . . . . 5 (((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∨ ∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s )) ∧ (∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s ))) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
1204, 7, 119syl2an 596 . . . 4 ((𝑦 ∈ ℕs𝑧 ∈ ℕs) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
121 eqeq1 2739 . . . . . 6 (𝑁 = (𝑦 -s 𝑧) → (𝑁 = (2s ·s 𝑥) ↔ (𝑦 -s 𝑧) = (2s ·s 𝑥)))
122121rexbidv 3177 . . . . 5 (𝑁 = (𝑦 -s 𝑧) → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥)))
123 eqeq1 2739 . . . . . 6 (𝑁 = (𝑦 -s 𝑧) → (𝑁 = ((2s ·s 𝑥) +s 1s ) ↔ (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
124123rexbidv 3177 . . . . 5 (𝑁 = (𝑦 -s 𝑧) → (∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
125122, 124orbi12d 918 . . . 4 (𝑁 = (𝑦 -s 𝑧) → ((∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))))
126120, 125syl5ibrcom 247 . . 3 ((𝑦 ∈ ℕs𝑧 ∈ ℕs) → (𝑁 = (𝑦 -s 𝑧) → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s ))))
127126rexlimivv 3199 . 2 (∃𝑦 ∈ ℕs𝑧 ∈ ℕs 𝑁 = (𝑦 -s 𝑧) → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s )))
1281, 127sylbi 217 1 (𝑁 ∈ ℤs → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wtru 1538  wcel 2106  wrex 3068  cfv 6563  (class class class)co 7431   No csur 27699   0s c0s 27882   1s c1s 27883   +s cadds 28007   -us cnegs 28066   -s csubs 28067   ·s cmuls 28147  0scnn0s 28333  scnns 28334  sczs 28379  2sc2s 28409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-1s 27885  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069  df-muls 28148  df-n0s 28335  df-nns 28336  df-zs 28380  df-2s 28410
This theorem is referenced by:  zs12bday  28439
  Copyright terms: Public domain W3C validator