MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zseo Structured version   Visualization version   GIF version

Theorem zseo 28308
Description: A surreal integer is either even or odd. (Contributed by Scott Fenton, 19-Aug-2025.)
Assertion
Ref Expression
zseo (𝑁 ∈ ℤs → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s )))
Distinct variable group:   𝑥,𝑁

Proof of Theorem zseo
Dummy variables 𝑦 𝑧 𝑤 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzs 28272 . 2 (𝑁 ∈ ℤs ↔ ∃𝑦 ∈ ℕs𝑧 ∈ ℕs 𝑁 = (𝑦 -s 𝑧))
2 nnn0s 28220 . . . . . 6 (𝑦 ∈ ℕs𝑦 ∈ ℕ0s)
3 n0seo 28307 . . . . . 6 (𝑦 ∈ ℕ0s → (∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∨ ∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s )))
42, 3syl 17 . . . . 5 (𝑦 ∈ ℕs → (∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∨ ∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s )))
5 nnn0s 28220 . . . . . 6 (𝑧 ∈ ℕs𝑧 ∈ ℕ0s)
6 n0seo 28307 . . . . . 6 (𝑧 ∈ ℕ0s → (∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )))
75, 6syl 17 . . . . 5 (𝑧 ∈ ℕs → (∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )))
8 reeanv 3209 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) ↔ (∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)))
9 n0zs 28277 . . . . . . . . . . . . 13 (𝑤 ∈ ℕ0s𝑤 ∈ ℤs)
109adantr 480 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 𝑤 ∈ ℤs)
11 n0zs 28277 . . . . . . . . . . . . 13 (𝑡 ∈ ℕ0s𝑡 ∈ ℤs)
1211adantl 481 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 𝑡 ∈ ℤs)
1310, 12zsubscld 28284 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (𝑤 -s 𝑡) ∈ ℤs)
14 2sno 28305 . . . . . . . . . . . . . 14 2s No
1514a1i 11 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 2s No )
16 n0sno 28216 . . . . . . . . . . . . . 14 (𝑤 ∈ ℕ0s𝑤 No )
1716adantr 480 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 𝑤 No )
18 n0sno 28216 . . . . . . . . . . . . . 14 (𝑡 ∈ ℕ0s𝑡 No )
1918adantl 481 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 𝑡 No )
2015, 17, 19subsdid 28061 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s (𝑤 -s 𝑡)) = ((2s ·s 𝑤) -s (2s ·s 𝑡)))
2120eqcomd 2735 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s (𝑤 -s 𝑡)))
22 oveq2 7395 . . . . . . . . . . . 12 (𝑥 = (𝑤 -s 𝑡) → (2s ·s 𝑥) = (2s ·s (𝑤 -s 𝑡)))
2322rspceeqv 3611 . . . . . . . . . . 11 (((𝑤 -s 𝑡) ∈ ℤs ∧ ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s (𝑤 -s 𝑡))) → ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s 𝑥))
2413, 21, 23syl2anc 584 . . . . . . . . . 10 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s 𝑥))
25 oveq12 7396 . . . . . . . . . . . 12 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → (𝑦 -s 𝑧) = ((2s ·s 𝑤) -s (2s ·s 𝑡)))
2625eqeq1d 2731 . . . . . . . . . . 11 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → ((𝑦 -s 𝑧) = (2s ·s 𝑥) ↔ ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s 𝑥)))
2726rexbidv 3157 . . . . . . . . . 10 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s (2s ·s 𝑡)) = (2s ·s 𝑥)))
2824, 27syl5ibrcom 247 . . . . . . . . 9 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥)))
2928rexlimivv 3179 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = (2s ·s 𝑤) ∧ 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥))
308, 29sylbir 235 . . . . . . 7 ((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥))
3130orcd 873 . . . . . 6 ((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
32 reeanv 3209 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) ↔ (∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)))
3315, 17mulscld 28038 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s 𝑤) ∈ No )
34 1sno 27739 . . . . . . . . . . . . . 14 1s No
3534a1i 11 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 1s No )
3615, 19mulscld 28038 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s 𝑡) ∈ No )
3733, 35, 36addsubsd 27986 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 1s ))
3821oveq1d 7402 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s 1s ))
3937, 38eqtrd 2764 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s (𝑤 -s 𝑡)) +s 1s ))
4022oveq1d 7402 . . . . . . . . . . . 12 (𝑥 = (𝑤 -s 𝑡) → ((2s ·s 𝑥) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s 1s ))
4140rspceeqv 3611 . . . . . . . . . . 11 (((𝑤 -s 𝑡) ∈ ℤs ∧ (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s (𝑤 -s 𝑡)) +s 1s )) → ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s 𝑥) +s 1s ))
4213, 39, 41syl2anc 584 . . . . . . . . . 10 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s 𝑥) +s 1s ))
43 oveq12 7396 . . . . . . . . . . . 12 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → (𝑦 -s 𝑧) = (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)))
4443eqeq1d 2731 . . . . . . . . . . 11 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → ((𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ) ↔ (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s 𝑥) +s 1s )))
4544rexbidv 3157 . . . . . . . . . 10 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s (2s ·s 𝑡)) = ((2s ·s 𝑥) +s 1s )))
4642, 45syl5ibrcom 247 . . . . . . . . 9 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
4746rexlimivv 3179 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))
4832, 47sylbir 235 . . . . . . 7 ((∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))
4948olcd 874 . . . . . 6 ((∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡)) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
50 reeanv 3209 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) ↔ (∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )))
51 1zs 28279 . . . . . . . . . . . . 13 1s ∈ ℤs
5251a1i 11 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → 1s ∈ ℤs)
5313, 52zsubscld 28284 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑤 -s 𝑡) -s 1s ) ∈ ℤs)
5413znod 28271 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (𝑤 -s 𝑡) ∈ No )
5515, 54, 35subsdid 28061 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s ((𝑤 -s 𝑡) -s 1s )) = ((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )))
5655oveq1d 7402 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s ) = (((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )) +s 1s ))
57 mulsrid 28016 . . . . . . . . . . . . . . . . 17 (2s No → (2s ·s 1s ) = 2s)
5814, 57ax-mp 5 . . . . . . . . . . . . . . . 16 (2s ·s 1s ) = 2s
5958oveq2i 7398 . . . . . . . . . . . . . . 15 ((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )) = ((2s ·s (𝑤 -s 𝑡)) -s 2s)
6059oveq1i 7397 . . . . . . . . . . . . . 14 (((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )) +s 1s ) = (((2s ·s (𝑤 -s 𝑡)) -s 2s) +s 1s )
6115, 54mulscld 28038 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (2s ·s (𝑤 -s 𝑡)) ∈ No )
6261, 35, 15addsubsd 27986 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s (𝑤 -s 𝑡)) +s 1s ) -s 2s) = (((2s ·s (𝑤 -s 𝑡)) -s 2s) +s 1s ))
6361, 35, 15addsubsassd 27985 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s (𝑤 -s 𝑡)) +s 1s ) -s 2s) = ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)))
6462, 63eqtr3d 2766 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s (𝑤 -s 𝑡)) -s 2s) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)))
6560, 64eqtrid 2776 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s (𝑤 -s 𝑡)) -s (2s ·s 1s )) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)))
6656, 65eqtrd 2764 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)))
67 subscl 27966 . . . . . . . . . . . . . . . . . 18 (( 1s No ∧ 2s No ) → ( 1s -s 2s) ∈ No )
6834, 14, 67mp2an 692 . . . . . . . . . . . . . . . . 17 ( 1s -s 2s) ∈ No
69 negnegs 27950 . . . . . . . . . . . . . . . . 17 (( 1s -s 2s) ∈ No → ( -us ‘( -us ‘( 1s -s 2s))) = ( 1s -s 2s))
7068, 69ax-mp 5 . . . . . . . . . . . . . . . 16 ( -us ‘( -us ‘( 1s -s 2s))) = ( 1s -s 2s)
7134a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 1s No )
7214a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → 2s No )
7371, 72negsubsdi2d 27984 . . . . . . . . . . . . . . . . . . 19 (⊤ → ( -us ‘( 1s -s 2s)) = (2s -s 1s ))
7473mptru 1547 . . . . . . . . . . . . . . . . . 18 ( -us ‘( 1s -s 2s)) = (2s -s 1s )
75 1p1e2s 28302 . . . . . . . . . . . . . . . . . . 19 ( 1s +s 1s ) = 2s
76 subadds 27974 . . . . . . . . . . . . . . . . . . . 20 ((2s No ∧ 1s No ∧ 1s No ) → ((2s -s 1s ) = 1s ↔ ( 1s +s 1s ) = 2s))
7714, 34, 34, 76mp3an 1463 . . . . . . . . . . . . . . . . . . 19 ((2s -s 1s ) = 1s ↔ ( 1s +s 1s ) = 2s)
7875, 77mpbir 231 . . . . . . . . . . . . . . . . . 18 (2s -s 1s ) = 1s
7974, 78eqtri 2752 . . . . . . . . . . . . . . . . 17 ( -us ‘( 1s -s 2s)) = 1s
8079fveq2i 6861 . . . . . . . . . . . . . . . 16 ( -us ‘( -us ‘( 1s -s 2s))) = ( -us ‘ 1s )
8170, 80eqtr3i 2754 . . . . . . . . . . . . . . 15 ( 1s -s 2s) = ( -us ‘ 1s )
8281oveq2i 7398 . . . . . . . . . . . . . 14 ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)) = ((2s ·s (𝑤 -s 𝑡)) +s ( -us ‘ 1s ))
8361, 35subsvald 27965 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s (𝑤 -s 𝑡)) -s 1s ) = ((2s ·s (𝑤 -s 𝑡)) +s ( -us ‘ 1s )))
8482, 83eqtr4id 2783 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)) = ((2s ·s (𝑤 -s 𝑡)) -s 1s ))
8520oveq1d 7402 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s (𝑤 -s 𝑡)) -s 1s ) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) -s 1s ))
8684, 85eqtrd 2764 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s (𝑤 -s 𝑡)) +s ( 1s -s 2s)) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) -s 1s ))
8733, 36, 35subsubs4d 27998 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) -s 1s ) = ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )))
8866, 86, 873eqtrrd 2769 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s ))
89 oveq2 7395 . . . . . . . . . . . . 13 (𝑥 = ((𝑤 -s 𝑡) -s 1s ) → (2s ·s 𝑥) = (2s ·s ((𝑤 -s 𝑡) -s 1s )))
9089oveq1d 7402 . . . . . . . . . . . 12 (𝑥 = ((𝑤 -s 𝑡) -s 1s ) → ((2s ·s 𝑥) +s 1s ) = ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s ))
9190rspceeqv 3611 . . . . . . . . . . 11 ((((𝑤 -s 𝑡) -s 1s ) ∈ ℤs ∧ ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s ((𝑤 -s 𝑡) -s 1s )) +s 1s )) → ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s 𝑥) +s 1s ))
9253, 88, 91syl2anc 584 . . . . . . . . . 10 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s 𝑥) +s 1s ))
93 oveq12 7396 . . . . . . . . . . . 12 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → (𝑦 -s 𝑧) = ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )))
9493eqeq1d 2731 . . . . . . . . . . 11 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ((𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ) ↔ ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s 𝑥) +s 1s )))
9594rexbidv 3157 . . . . . . . . . 10 ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℤs ((2s ·s 𝑤) -s ((2s ·s 𝑡) +s 1s )) = ((2s ·s 𝑥) +s 1s )))
9692, 95syl5ibrcom 247 . . . . . . . . 9 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
9796rexlimivv 3179 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = (2s ·s 𝑤) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))
9850, 97sylbir 235 . . . . . . 7 ((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))
9998olcd 874 . . . . . 6 ((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
100 reeanv 3209 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) ↔ (∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )))
10133, 35, 36, 35addsubs4d 28004 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s ( 1s -s 1s )))
102 subsid 27973 . . . . . . . . . . . . . . 15 ( 1s No → ( 1s -s 1s ) = 0s )
10334, 102ax-mp 5 . . . . . . . . . . . . . 14 ( 1s -s 1s ) = 0s
104103oveq2i 7398 . . . . . . . . . . . . 13 (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s ( 1s -s 1s )) = (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 0s )
10533, 36subscld 27967 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((2s ·s 𝑤) -s (2s ·s 𝑡)) ∈ No )
106105addsridd 27872 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 0s ) = ((2s ·s 𝑤) -s (2s ·s 𝑡)))
107106, 21eqtrd 2764 . . . . . . . . . . . . 13 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s 0s ) = (2s ·s (𝑤 -s 𝑡)))
108104, 107eqtrid 2776 . . . . . . . . . . . 12 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) -s (2s ·s 𝑡)) +s ( 1s -s 1s )) = (2s ·s (𝑤 -s 𝑡)))
109101, 108eqtrd 2764 . . . . . . . . . . 11 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s (𝑤 -s 𝑡)))
11022rspceeqv 3611 . . . . . . . . . . 11 (((𝑤 -s 𝑡) ∈ ℤs ∧ (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s (𝑤 -s 𝑡))) → ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s 𝑥))
11113, 109, 110syl2anc 584 . . . . . . . . . 10 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s 𝑥))
112 oveq12 7396 . . . . . . . . . . . 12 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → (𝑦 -s 𝑧) = (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )))
113112eqeq1d 2731 . . . . . . . . . . 11 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ((𝑦 -s 𝑧) = (2s ·s 𝑥) ↔ (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s 𝑥)))
114113rexbidv 3157 . . . . . . . . . 10 ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℤs (((2s ·s 𝑤) +s 1s ) -s ((2s ·s 𝑡) +s 1s )) = (2s ·s 𝑥)))
115111, 114syl5ibrcom 247 . . . . . . . . 9 ((𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s) → ((𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥)))
116115rexlimivv 3179 . . . . . . . 8 (∃𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s (𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥))
117100, 116sylbir 235 . . . . . . 7 ((∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )) → ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥))
118117orcd 873 . . . . . 6 ((∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s ) ∧ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s )) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
11931, 49, 99, 118ccase 1037 . . . . 5 (((∃𝑤 ∈ ℕ0s 𝑦 = (2s ·s 𝑤) ∨ ∃𝑤 ∈ ℕ0s 𝑦 = ((2s ·s 𝑤) +s 1s )) ∧ (∃𝑡 ∈ ℕ0s 𝑧 = (2s ·s 𝑡) ∨ ∃𝑡 ∈ ℕ0s 𝑧 = ((2s ·s 𝑡) +s 1s ))) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
1204, 7, 119syl2an 596 . . . 4 ((𝑦 ∈ ℕs𝑧 ∈ ℕs) → (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
121 eqeq1 2733 . . . . . 6 (𝑁 = (𝑦 -s 𝑧) → (𝑁 = (2s ·s 𝑥) ↔ (𝑦 -s 𝑧) = (2s ·s 𝑥)))
122121rexbidv 3157 . . . . 5 (𝑁 = (𝑦 -s 𝑧) → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ↔ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥)))
123 eqeq1 2733 . . . . . 6 (𝑁 = (𝑦 -s 𝑧) → (𝑁 = ((2s ·s 𝑥) +s 1s ) ↔ (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
124123rexbidv 3157 . . . . 5 (𝑁 = (𝑦 -s 𝑧) → (∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s ) ↔ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s )))
125122, 124orbi12d 918 . . . 4 (𝑁 = (𝑦 -s 𝑧) → ((∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s )) ↔ (∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs (𝑦 -s 𝑧) = ((2s ·s 𝑥) +s 1s ))))
126120, 125syl5ibrcom 247 . . 3 ((𝑦 ∈ ℕs𝑧 ∈ ℕs) → (𝑁 = (𝑦 -s 𝑧) → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s ))))
127126rexlimivv 3179 . 2 (∃𝑦 ∈ ℕs𝑧 ∈ ℕs 𝑁 = (𝑦 -s 𝑧) → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s )))
1281, 127sylbi 217 1 (𝑁 ∈ ℤs → (∃𝑥 ∈ ℤs 𝑁 = (2s ·s 𝑥) ∨ ∃𝑥 ∈ ℤs 𝑁 = ((2s ·s 𝑥) +s 1s )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wtru 1541  wcel 2109  wrex 3053  cfv 6511  (class class class)co 7387   No csur 27551   0s c0s 27734   1s c1s 27735   +s cadds 27866   -us cnegs 27925   -s csubs 27926   ·s cmuls 28009  0scnn0s 28206  scnns 28207  sczs 28266  2sc2s 28296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-1s 27737  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-norec2 27856  df-adds 27867  df-negs 27927  df-subs 27928  df-muls 28010  df-n0s 28208  df-nns 28209  df-zs 28267  df-2s 28297
This theorem is referenced by:  zs12bday  28343
  Copyright terms: Public domain W3C validator