MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elzn0s Structured version   Visualization version   GIF version

Theorem elzn0s 28286
Description: A surreal integer is a surreal that is a non-negative integer or whose negative is a non-negative integer. (Contributed by Scott Fenton, 26-May-2025.)
Assertion
Ref Expression
elzn0s (𝐴 ∈ ℤs ↔ (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))

Proof of Theorem elzn0s
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzs 28272 . 2 (𝐴 ∈ ℤs ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
2 nnsno 28217 . . . . . . 7 (𝑛 ∈ ℕs𝑛 No )
3 nnsno 28217 . . . . . . 7 (𝑚 ∈ ℕs𝑚 No )
4 subscl 27966 . . . . . . 7 ((𝑛 No 𝑚 No ) → (𝑛 -s 𝑚) ∈ No )
52, 3, 4syl2an 596 . . . . . 6 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑛 -s 𝑚) ∈ No )
6 sletric 27676 . . . . . . . 8 ((𝑚 No 𝑛 No ) → (𝑚 ≤s 𝑛𝑛 ≤s 𝑚))
73, 2, 6syl2anr 597 . . . . . . 7 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑚 ≤s 𝑛𝑛 ≤s 𝑚))
8 nnn0s 28220 . . . . . . . . 9 (𝑚 ∈ ℕs𝑚 ∈ ℕ0s)
9 nnn0s 28220 . . . . . . . . 9 (𝑛 ∈ ℕs𝑛 ∈ ℕ0s)
10 n0subs 28253 . . . . . . . . 9 ((𝑚 ∈ ℕ0s𝑛 ∈ ℕ0s) → (𝑚 ≤s 𝑛 ↔ (𝑛 -s 𝑚) ∈ ℕ0s))
118, 9, 10syl2anr 597 . . . . . . . 8 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑚 ≤s 𝑛 ↔ (𝑛 -s 𝑚) ∈ ℕ0s))
12 n0subs 28253 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s) → (𝑛 ≤s 𝑚 ↔ (𝑚 -s 𝑛) ∈ ℕ0s))
139, 8, 12syl2an 596 . . . . . . . . 9 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑛 ≤s 𝑚 ↔ (𝑚 -s 𝑛) ∈ ℕ0s))
142adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 𝑛 No )
153adantl 481 . . . . . . . . . . 11 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 𝑚 No )
1614, 15negsubsdi2d 27984 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( -us ‘(𝑛 -s 𝑚)) = (𝑚 -s 𝑛))
1716eleq1d 2813 . . . . . . . . 9 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s ↔ (𝑚 -s 𝑛) ∈ ℕ0s))
1813, 17bitr4d 282 . . . . . . . 8 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑛 ≤s 𝑚 ↔ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))
1911, 18orbi12d 918 . . . . . . 7 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ((𝑚 ≤s 𝑛𝑛 ≤s 𝑚) ↔ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s)))
207, 19mpbid 232 . . . . . 6 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))
215, 20jca 511 . . . . 5 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ((𝑛 -s 𝑚) ∈ No ∧ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s)))
22 eleq1 2816 . . . . . 6 (𝐴 = (𝑛 -s 𝑚) → (𝐴 No ↔ (𝑛 -s 𝑚) ∈ No ))
23 eleq1 2816 . . . . . . 7 (𝐴 = (𝑛 -s 𝑚) → (𝐴 ∈ ℕ0s ↔ (𝑛 -s 𝑚) ∈ ℕ0s))
24 fveq2 6858 . . . . . . . 8 (𝐴 = (𝑛 -s 𝑚) → ( -us𝐴) = ( -us ‘(𝑛 -s 𝑚)))
2524eleq1d 2813 . . . . . . 7 (𝐴 = (𝑛 -s 𝑚) → (( -us𝐴) ∈ ℕ0s ↔ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))
2623, 25orbi12d 918 . . . . . 6 (𝐴 = (𝑛 -s 𝑚) → ((𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s) ↔ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s)))
2722, 26anbi12d 632 . . . . 5 (𝐴 = (𝑛 -s 𝑚) → ((𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)) ↔ ((𝑛 -s 𝑚) ∈ No ∧ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))))
2821, 27syl5ibrcom 247 . . . 4 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝐴 = (𝑛 -s 𝑚) → (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s))))
2928rexlimivv 3179 . . 3 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚) → (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))
30 n0p1nns 28260 . . . . . 6 (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) ∈ ℕs)
31 1nns 28241 . . . . . . 7 1s ∈ ℕs
3231a1i 11 . . . . . 6 (𝐴 ∈ ℕ0s → 1s ∈ ℕs)
33 n0sno 28216 . . . . . . . 8 (𝐴 ∈ ℕ0s𝐴 No )
34 1sno 27739 . . . . . . . 8 1s No
35 pncans 27976 . . . . . . . 8 ((𝐴 No ∧ 1s No ) → ((𝐴 +s 1s ) -s 1s ) = 𝐴)
3633, 34, 35sylancl 586 . . . . . . 7 (𝐴 ∈ ℕ0s → ((𝐴 +s 1s ) -s 1s ) = 𝐴)
3736eqcomd 2735 . . . . . 6 (𝐴 ∈ ℕ0s𝐴 = ((𝐴 +s 1s ) -s 1s ))
38 rspceov 7436 . . . . . 6 (((𝐴 +s 1s ) ∈ ℕs ∧ 1s ∈ ℕs𝐴 = ((𝐴 +s 1s ) -s 1s )) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
3930, 32, 37, 38syl3anc 1373 . . . . 5 (𝐴 ∈ ℕ0s → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
4039adantl 481 . . . 4 ((𝐴 No 𝐴 ∈ ℕ0s) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
4131a1i 11 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → 1s ∈ ℕs)
4234a1i 11 . . . . . . . . 9 (𝐴 No → 1s No )
43 id 22 . . . . . . . . 9 (𝐴 No 𝐴 No )
4442, 43subsvald 27965 . . . . . . . 8 (𝐴 No → ( 1s -s 𝐴) = ( 1s +s ( -us𝐴)))
45 negscl 27942 . . . . . . . . 9 (𝐴 No → ( -us𝐴) ∈ No )
4642, 45addscomd 27874 . . . . . . . 8 (𝐴 No → ( 1s +s ( -us𝐴)) = (( -us𝐴) +s 1s ))
4744, 46eqtrd 2764 . . . . . . 7 (𝐴 No → ( 1s -s 𝐴) = (( -us𝐴) +s 1s ))
4847adantr 480 . . . . . 6 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( 1s -s 𝐴) = (( -us𝐴) +s 1s ))
49 n0p1nns 28260 . . . . . . 7 (( -us𝐴) ∈ ℕ0s → (( -us𝐴) +s 1s ) ∈ ℕs)
5049adantl 481 . . . . . 6 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → (( -us𝐴) +s 1s ) ∈ ℕs)
5148, 50eqeltrd 2828 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( 1s -s 𝐴) ∈ ℕs)
5242, 43nncansd 28000 . . . . . . 7 (𝐴 No → ( 1s -s ( 1s -s 𝐴)) = 𝐴)
5352eqcomd 2735 . . . . . 6 (𝐴 No 𝐴 = ( 1s -s ( 1s -s 𝐴)))
5453adantr 480 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → 𝐴 = ( 1s -s ( 1s -s 𝐴)))
55 rspceov 7436 . . . . 5 (( 1s ∈ ℕs ∧ ( 1s -s 𝐴) ∈ ℕs𝐴 = ( 1s -s ( 1s -s 𝐴))) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
5641, 51, 54, 55syl3anc 1373 . . . 4 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
5740, 56jaodan 959 . . 3 ((𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
5829, 57impbii 209 . 2 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚) ↔ (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))
591, 58bitri 275 1 (𝐴 ∈ ℤs ↔ (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387   No csur 27551   ≤s csle 27656   1s c1s 27735   +s cadds 27866   -us cnegs 27925   -s csubs 27926  0scnn0s 28206  scnns 28207  sczs 28266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-nadd 8630  df-no 27554  df-slt 27555  df-bday 27556  df-sle 27657  df-sslt 27693  df-scut 27695  df-0s 27736  df-1s 27737  df-made 27755  df-old 27756  df-left 27758  df-right 27759  df-norec 27845  df-norec2 27856  df-adds 27867  df-negs 27927  df-subs 27928  df-n0s 28208  df-nns 28209  df-zs 28267
This theorem is referenced by:  elzs2  28287  zsbday  28294  zscut  28295
  Copyright terms: Public domain W3C validator