MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elzn0s Structured version   Visualization version   GIF version

Theorem elzn0s 28399
Description: A surreal integer is a surreal that is a non-negative integer or whose negative is a non-negative integer. (Contributed by Scott Fenton, 26-May-2025.)
Assertion
Ref Expression
elzn0s (𝐴 ∈ ℤs ↔ (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))

Proof of Theorem elzn0s
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzs 28385 . 2 (𝐴 ∈ ℤs ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
2 nnsno 28344 . . . . . . 7 (𝑛 ∈ ℕs𝑛 No )
3 nnsno 28344 . . . . . . 7 (𝑚 ∈ ℕs𝑚 No )
4 subscl 28107 . . . . . . 7 ((𝑛 No 𝑚 No ) → (𝑛 -s 𝑚) ∈ No )
52, 3, 4syl2an 596 . . . . . 6 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑛 -s 𝑚) ∈ No )
6 sletric 27824 . . . . . . . 8 ((𝑚 No 𝑛 No ) → (𝑚 ≤s 𝑛𝑛 ≤s 𝑚))
73, 2, 6syl2anr 597 . . . . . . 7 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑚 ≤s 𝑛𝑛 ≤s 𝑚))
8 nnn0s 28347 . . . . . . . . 9 (𝑚 ∈ ℕs𝑚 ∈ ℕ0s)
9 nnn0s 28347 . . . . . . . . 9 (𝑛 ∈ ℕs𝑛 ∈ ℕ0s)
10 n0subs 28375 . . . . . . . . 9 ((𝑚 ∈ ℕ0s𝑛 ∈ ℕ0s) → (𝑚 ≤s 𝑛 ↔ (𝑛 -s 𝑚) ∈ ℕ0s))
118, 9, 10syl2anr 597 . . . . . . . 8 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑚 ≤s 𝑛 ↔ (𝑛 -s 𝑚) ∈ ℕ0s))
12 n0subs 28375 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s) → (𝑛 ≤s 𝑚 ↔ (𝑚 -s 𝑛) ∈ ℕ0s))
139, 8, 12syl2an 596 . . . . . . . . 9 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑛 ≤s 𝑚 ↔ (𝑚 -s 𝑛) ∈ ℕ0s))
142adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 𝑛 No )
153adantl 481 . . . . . . . . . . 11 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 𝑚 No )
1614, 15negsubsdi2d 28125 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( -us ‘(𝑛 -s 𝑚)) = (𝑚 -s 𝑛))
1716eleq1d 2824 . . . . . . . . 9 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s ↔ (𝑚 -s 𝑛) ∈ ℕ0s))
1813, 17bitr4d 282 . . . . . . . 8 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑛 ≤s 𝑚 ↔ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))
1911, 18orbi12d 918 . . . . . . 7 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ((𝑚 ≤s 𝑛𝑛 ≤s 𝑚) ↔ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s)))
207, 19mpbid 232 . . . . . 6 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))
215, 20jca 511 . . . . 5 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ((𝑛 -s 𝑚) ∈ No ∧ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s)))
22 eleq1 2827 . . . . . 6 (𝐴 = (𝑛 -s 𝑚) → (𝐴 No ↔ (𝑛 -s 𝑚) ∈ No ))
23 eleq1 2827 . . . . . . 7 (𝐴 = (𝑛 -s 𝑚) → (𝐴 ∈ ℕ0s ↔ (𝑛 -s 𝑚) ∈ ℕ0s))
24 fveq2 6907 . . . . . . . 8 (𝐴 = (𝑛 -s 𝑚) → ( -us𝐴) = ( -us ‘(𝑛 -s 𝑚)))
2524eleq1d 2824 . . . . . . 7 (𝐴 = (𝑛 -s 𝑚) → (( -us𝐴) ∈ ℕ0s ↔ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))
2623, 25orbi12d 918 . . . . . 6 (𝐴 = (𝑛 -s 𝑚) → ((𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s) ↔ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s)))
2722, 26anbi12d 632 . . . . 5 (𝐴 = (𝑛 -s 𝑚) → ((𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)) ↔ ((𝑛 -s 𝑚) ∈ No ∧ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))))
2821, 27syl5ibrcom 247 . . . 4 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝐴 = (𝑛 -s 𝑚) → (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s))))
2928rexlimivv 3199 . . 3 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚) → (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))
30 n0p1nns 28376 . . . . . 6 (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) ∈ ℕs)
31 1nns 28367 . . . . . . 7 1s ∈ ℕs
3231a1i 11 . . . . . 6 (𝐴 ∈ ℕ0s → 1s ∈ ℕs)
33 n0sno 28343 . . . . . . . 8 (𝐴 ∈ ℕ0s𝐴 No )
34 1sno 27887 . . . . . . . 8 1s No
35 pncans 28117 . . . . . . . 8 ((𝐴 No ∧ 1s No ) → ((𝐴 +s 1s ) -s 1s ) = 𝐴)
3633, 34, 35sylancl 586 . . . . . . 7 (𝐴 ∈ ℕ0s → ((𝐴 +s 1s ) -s 1s ) = 𝐴)
3736eqcomd 2741 . . . . . 6 (𝐴 ∈ ℕ0s𝐴 = ((𝐴 +s 1s ) -s 1s ))
38 rspceov 7480 . . . . . 6 (((𝐴 +s 1s ) ∈ ℕs ∧ 1s ∈ ℕs𝐴 = ((𝐴 +s 1s ) -s 1s )) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
3930, 32, 37, 38syl3anc 1370 . . . . 5 (𝐴 ∈ ℕ0s → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
4039adantl 481 . . . 4 ((𝐴 No 𝐴 ∈ ℕ0s) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
4131a1i 11 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → 1s ∈ ℕs)
4234a1i 11 . . . . . . . . 9 (𝐴 No → 1s No )
43 id 22 . . . . . . . . 9 (𝐴 No 𝐴 No )
4442, 43subsvald 28106 . . . . . . . 8 (𝐴 No → ( 1s -s 𝐴) = ( 1s +s ( -us𝐴)))
45 negscl 28083 . . . . . . . . 9 (𝐴 No → ( -us𝐴) ∈ No )
4642, 45addscomd 28015 . . . . . . . 8 (𝐴 No → ( 1s +s ( -us𝐴)) = (( -us𝐴) +s 1s ))
4744, 46eqtrd 2775 . . . . . . 7 (𝐴 No → ( 1s -s 𝐴) = (( -us𝐴) +s 1s ))
4847adantr 480 . . . . . 6 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( 1s -s 𝐴) = (( -us𝐴) +s 1s ))
49 n0p1nns 28376 . . . . . . 7 (( -us𝐴) ∈ ℕ0s → (( -us𝐴) +s 1s ) ∈ ℕs)
5049adantl 481 . . . . . 6 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → (( -us𝐴) +s 1s ) ∈ ℕs)
5148, 50eqeltrd 2839 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( 1s -s 𝐴) ∈ ℕs)
5242, 43nncansd 28141 . . . . . . 7 (𝐴 No → ( 1s -s ( 1s -s 𝐴)) = 𝐴)
5352eqcomd 2741 . . . . . 6 (𝐴 No 𝐴 = ( 1s -s ( 1s -s 𝐴)))
5453adantr 480 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → 𝐴 = ( 1s -s ( 1s -s 𝐴)))
55 rspceov 7480 . . . . 5 (( 1s ∈ ℕs ∧ ( 1s -s 𝐴) ∈ ℕs𝐴 = ( 1s -s ( 1s -s 𝐴))) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
5641, 51, 54, 55syl3anc 1370 . . . 4 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
5740, 56jaodan 959 . . 3 ((𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
5829, 57impbii 209 . 2 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚) ↔ (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))
591, 58bitri 275 1 (𝐴 ∈ ℤs ↔ (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wrex 3068   class class class wbr 5148  cfv 6563  (class class class)co 7431   No csur 27699   ≤s csle 27804   1s c1s 27883   +s cadds 28007   -us cnegs 28066   -s csubs 28067  0scnn0s 28333  scnns 28334  sczs 28379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-1s 27885  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069  df-n0s 28335  df-nns 28336  df-zs 28380
This theorem is referenced by:  elzs2  28400  zsbday  28407  zscut  28408
  Copyright terms: Public domain W3C validator