MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elzn0s Structured version   Visualization version   GIF version

Theorem elzn0s 28323
Description: A surreal integer is a surreal that is a non-negative integer or whose negative is a non-negative integer. (Contributed by Scott Fenton, 26-May-2025.)
Assertion
Ref Expression
elzn0s (𝐴 ∈ ℤs ↔ (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))

Proof of Theorem elzn0s
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzs 28309 . 2 (𝐴 ∈ ℤs ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
2 nnsno 28254 . . . . . . 7 (𝑛 ∈ ℕs𝑛 No )
3 nnsno 28254 . . . . . . 7 (𝑚 ∈ ℕs𝑚 No )
4 subscl 28003 . . . . . . 7 ((𝑛 No 𝑚 No ) → (𝑛 -s 𝑚) ∈ No )
52, 3, 4syl2an 596 . . . . . 6 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑛 -s 𝑚) ∈ No )
6 sletric 27704 . . . . . . . 8 ((𝑚 No 𝑛 No ) → (𝑚 ≤s 𝑛𝑛 ≤s 𝑚))
73, 2, 6syl2anr 597 . . . . . . 7 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑚 ≤s 𝑛𝑛 ≤s 𝑚))
8 nnn0s 28257 . . . . . . . . 9 (𝑚 ∈ ℕs𝑚 ∈ ℕ0s)
9 nnn0s 28257 . . . . . . . . 9 (𝑛 ∈ ℕs𝑛 ∈ ℕ0s)
10 n0subs 28290 . . . . . . . . 9 ((𝑚 ∈ ℕ0s𝑛 ∈ ℕ0s) → (𝑚 ≤s 𝑛 ↔ (𝑛 -s 𝑚) ∈ ℕ0s))
118, 9, 10syl2anr 597 . . . . . . . 8 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑚 ≤s 𝑛 ↔ (𝑛 -s 𝑚) ∈ ℕ0s))
12 n0subs 28290 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s) → (𝑛 ≤s 𝑚 ↔ (𝑚 -s 𝑛) ∈ ℕ0s))
139, 8, 12syl2an 596 . . . . . . . . 9 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑛 ≤s 𝑚 ↔ (𝑚 -s 𝑛) ∈ ℕ0s))
142adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 𝑛 No )
153adantl 481 . . . . . . . . . . 11 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 𝑚 No )
1614, 15negsubsdi2d 28021 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( -us ‘(𝑛 -s 𝑚)) = (𝑚 -s 𝑛))
1716eleq1d 2818 . . . . . . . . 9 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s ↔ (𝑚 -s 𝑛) ∈ ℕ0s))
1813, 17bitr4d 282 . . . . . . . 8 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑛 ≤s 𝑚 ↔ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))
1911, 18orbi12d 918 . . . . . . 7 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ((𝑚 ≤s 𝑛𝑛 ≤s 𝑚) ↔ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s)))
207, 19mpbid 232 . . . . . 6 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))
215, 20jca 511 . . . . 5 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ((𝑛 -s 𝑚) ∈ No ∧ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s)))
22 eleq1 2821 . . . . . 6 (𝐴 = (𝑛 -s 𝑚) → (𝐴 No ↔ (𝑛 -s 𝑚) ∈ No ))
23 eleq1 2821 . . . . . . 7 (𝐴 = (𝑛 -s 𝑚) → (𝐴 ∈ ℕ0s ↔ (𝑛 -s 𝑚) ∈ ℕ0s))
24 fveq2 6828 . . . . . . . 8 (𝐴 = (𝑛 -s 𝑚) → ( -us𝐴) = ( -us ‘(𝑛 -s 𝑚)))
2524eleq1d 2818 . . . . . . 7 (𝐴 = (𝑛 -s 𝑚) → (( -us𝐴) ∈ ℕ0s ↔ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))
2623, 25orbi12d 918 . . . . . 6 (𝐴 = (𝑛 -s 𝑚) → ((𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s) ↔ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s)))
2722, 26anbi12d 632 . . . . 5 (𝐴 = (𝑛 -s 𝑚) → ((𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)) ↔ ((𝑛 -s 𝑚) ∈ No ∧ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))))
2821, 27syl5ibrcom 247 . . . 4 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝐴 = (𝑛 -s 𝑚) → (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s))))
2928rexlimivv 3175 . . 3 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚) → (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))
30 n0p1nns 28297 . . . . . 6 (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) ∈ ℕs)
31 1nns 28278 . . . . . . 7 1s ∈ ℕs
3231a1i 11 . . . . . 6 (𝐴 ∈ ℕ0s → 1s ∈ ℕs)
33 n0sno 28253 . . . . . . . 8 (𝐴 ∈ ℕ0s𝐴 No )
34 1sno 27772 . . . . . . . 8 1s No
35 pncans 28013 . . . . . . . 8 ((𝐴 No ∧ 1s No ) → ((𝐴 +s 1s ) -s 1s ) = 𝐴)
3633, 34, 35sylancl 586 . . . . . . 7 (𝐴 ∈ ℕ0s → ((𝐴 +s 1s ) -s 1s ) = 𝐴)
3736eqcomd 2739 . . . . . 6 (𝐴 ∈ ℕ0s𝐴 = ((𝐴 +s 1s ) -s 1s ))
38 rspceov 7401 . . . . . 6 (((𝐴 +s 1s ) ∈ ℕs ∧ 1s ∈ ℕs𝐴 = ((𝐴 +s 1s ) -s 1s )) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
3930, 32, 37, 38syl3anc 1373 . . . . 5 (𝐴 ∈ ℕ0s → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
4039adantl 481 . . . 4 ((𝐴 No 𝐴 ∈ ℕ0s) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
4131a1i 11 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → 1s ∈ ℕs)
4234a1i 11 . . . . . . . . 9 (𝐴 No → 1s No )
43 id 22 . . . . . . . . 9 (𝐴 No 𝐴 No )
4442, 43subsvald 28002 . . . . . . . 8 (𝐴 No → ( 1s -s 𝐴) = ( 1s +s ( -us𝐴)))
45 negscl 27979 . . . . . . . . 9 (𝐴 No → ( -us𝐴) ∈ No )
4642, 45addscomd 27911 . . . . . . . 8 (𝐴 No → ( 1s +s ( -us𝐴)) = (( -us𝐴) +s 1s ))
4744, 46eqtrd 2768 . . . . . . 7 (𝐴 No → ( 1s -s 𝐴) = (( -us𝐴) +s 1s ))
4847adantr 480 . . . . . 6 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( 1s -s 𝐴) = (( -us𝐴) +s 1s ))
49 n0p1nns 28297 . . . . . . 7 (( -us𝐴) ∈ ℕ0s → (( -us𝐴) +s 1s ) ∈ ℕs)
5049adantl 481 . . . . . 6 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → (( -us𝐴) +s 1s ) ∈ ℕs)
5148, 50eqeltrd 2833 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( 1s -s 𝐴) ∈ ℕs)
5242, 43nncansd 28037 . . . . . . 7 (𝐴 No → ( 1s -s ( 1s -s 𝐴)) = 𝐴)
5352eqcomd 2739 . . . . . 6 (𝐴 No 𝐴 = ( 1s -s ( 1s -s 𝐴)))
5453adantr 480 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → 𝐴 = ( 1s -s ( 1s -s 𝐴)))
55 rspceov 7401 . . . . 5 (( 1s ∈ ℕs ∧ ( 1s -s 𝐴) ∈ ℕs𝐴 = ( 1s -s ( 1s -s 𝐴))) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
5641, 51, 54, 55syl3anc 1373 . . . 4 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
5740, 56jaodan 959 . . 3 ((𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
5829, 57impbii 209 . 2 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚) ↔ (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))
591, 58bitri 275 1 (𝐴 ∈ ℤs ↔ (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wrex 3057   class class class wbr 5093  cfv 6486  (class class class)co 7352   No csur 27579   ≤s csle 27684   1s c1s 27768   +s cadds 27903   -us cnegs 27962   -s csubs 27963  0scnn0s 28243  scnns 28244  sczs 28303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-nadd 8587  df-no 27582  df-slt 27583  df-bday 27584  df-sle 27685  df-sslt 27722  df-scut 27724  df-0s 27769  df-1s 27770  df-made 27789  df-old 27790  df-left 27792  df-right 27793  df-norec 27882  df-norec2 27893  df-adds 27904  df-negs 27964  df-subs 27965  df-n0s 28245  df-nns 28246  df-zs 28304
This theorem is referenced by:  elzs2  28324  zsbday  28331  zscut  28332
  Copyright terms: Public domain W3C validator