Step | Hyp | Ref
| Expression |
1 | | elzs 28283 |
. 2
⊢ (𝐴 ∈ ℤs
↔ ∃𝑛 ∈
ℕs ∃𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚)) |
2 | | nnsno 28246 |
. . . . . . 7
⊢ (𝑛 ∈ ℕs
→ 𝑛 ∈ No ) |
3 | | nnsno 28246 |
. . . . . . 7
⊢ (𝑚 ∈ ℕs
→ 𝑚 ∈ No ) |
4 | | subscl 28018 |
. . . . . . 7
⊢ ((𝑛 ∈
No ∧ 𝑚 ∈
No ) → (𝑛 -s 𝑚) ∈ No
) |
5 | 2, 3, 4 | syl2an 594 |
. . . . . 6
⊢ ((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) → (𝑛 -s 𝑚) ∈ No
) |
6 | | sletric 27743 |
. . . . . . . 8
⊢ ((𝑚 ∈
No ∧ 𝑛 ∈
No ) → (𝑚 ≤s 𝑛 ∨ 𝑛 ≤s 𝑚)) |
7 | 3, 2, 6 | syl2anr 595 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) → (𝑚 ≤s 𝑛 ∨ 𝑛 ≤s 𝑚)) |
8 | | nnn0s 28249 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕs
→ 𝑚 ∈
ℕ0s) |
9 | | nnn0s 28249 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕs
→ 𝑛 ∈
ℕ0s) |
10 | | n0subs 28275 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ℕ0s
∧ 𝑛 ∈
ℕ0s) → (𝑚 ≤s 𝑛 ↔ (𝑛 -s 𝑚) ∈
ℕ0s)) |
11 | 8, 9, 10 | syl2anr 595 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) → (𝑚 ≤s 𝑛 ↔ (𝑛 -s 𝑚) ∈
ℕ0s)) |
12 | | n0subs 28275 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0s
∧ 𝑚 ∈
ℕ0s) → (𝑛 ≤s 𝑚 ↔ (𝑚 -s 𝑛) ∈
ℕ0s)) |
13 | 9, 8, 12 | syl2an 594 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) → (𝑛 ≤s 𝑚 ↔ (𝑚 -s 𝑛) ∈
ℕ0s)) |
14 | 2 | adantr 479 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) → 𝑛 ∈ No
) |
15 | 3 | adantl 480 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) → 𝑚 ∈ No
) |
16 | 14, 15 | negsubsdi2d 28036 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) → ( -us ‘(𝑛 -s 𝑚)) = (𝑚 -s 𝑛)) |
17 | 16 | eleq1d 2810 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) → (( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s ↔ (𝑚 -s 𝑛) ∈
ℕ0s)) |
18 | 13, 17 | bitr4d 281 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) → (𝑛 ≤s 𝑚 ↔ ( -us ‘(𝑛 -s 𝑚)) ∈
ℕ0s)) |
19 | 11, 18 | orbi12d 916 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) → ((𝑚 ≤s 𝑛 ∨ 𝑛 ≤s 𝑚) ↔ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ (
-us ‘(𝑛
-s 𝑚)) ∈
ℕ0s))) |
20 | 7, 19 | mpbid 231 |
. . . . . 6
⊢ ((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) → ((𝑛 -s 𝑚) ∈ ℕ0s ∨ (
-us ‘(𝑛
-s 𝑚)) ∈
ℕ0s)) |
21 | 5, 20 | jca 510 |
. . . . 5
⊢ ((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) → ((𝑛 -s 𝑚) ∈ No
∧ ((𝑛 -s
𝑚) ∈
ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈
ℕ0s))) |
22 | | eleq1 2813 |
. . . . . 6
⊢ (𝐴 = (𝑛 -s 𝑚) → (𝐴 ∈ No
↔ (𝑛 -s
𝑚) ∈ No )) |
23 | | eleq1 2813 |
. . . . . . 7
⊢ (𝐴 = (𝑛 -s 𝑚) → (𝐴 ∈ ℕ0s ↔ (𝑛 -s 𝑚) ∈
ℕ0s)) |
24 | | fveq2 6896 |
. . . . . . . 8
⊢ (𝐴 = (𝑛 -s 𝑚) → ( -us ‘𝐴) = ( -us
‘(𝑛 -s
𝑚))) |
25 | 24 | eleq1d 2810 |
. . . . . . 7
⊢ (𝐴 = (𝑛 -s 𝑚) → (( -us ‘𝐴) ∈ ℕ0s
↔ ( -us ‘(𝑛 -s 𝑚)) ∈
ℕ0s)) |
26 | 23, 25 | orbi12d 916 |
. . . . . 6
⊢ (𝐴 = (𝑛 -s 𝑚) → ((𝐴 ∈ ℕ0s ∨ (
-us ‘𝐴)
∈ ℕ0s) ↔ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ (
-us ‘(𝑛
-s 𝑚)) ∈
ℕ0s))) |
27 | 22, 26 | anbi12d 630 |
. . . . 5
⊢ (𝐴 = (𝑛 -s 𝑚) → ((𝐴 ∈ No
∧ (𝐴 ∈
ℕ0s ∨ ( -us ‘𝐴) ∈ ℕ0s)) ↔
((𝑛 -s 𝑚) ∈
No ∧ ((𝑛
-s 𝑚) ∈
ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈
ℕ0s)))) |
28 | 21, 27 | syl5ibrcom 246 |
. . . 4
⊢ ((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) → (𝐴 = (𝑛 -s 𝑚) → (𝐴 ∈ No
∧ (𝐴 ∈
ℕ0s ∨ ( -us ‘𝐴) ∈
ℕ0s)))) |
29 | 28 | rexlimivv 3189 |
. . 3
⊢
(∃𝑛 ∈
ℕs ∃𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚) → (𝐴 ∈ No
∧ (𝐴 ∈
ℕ0s ∨ ( -us ‘𝐴) ∈
ℕ0s))) |
30 | | n0p1nns 28276 |
. . . . . 6
⊢ (𝐴 ∈ ℕ0s
→ (𝐴 +s
1s ) ∈ ℕs) |
31 | | 1nns 28267 |
. . . . . . 7
⊢
1s ∈ ℕs |
32 | 31 | a1i 11 |
. . . . . 6
⊢ (𝐴 ∈ ℕ0s
→ 1s ∈ ℕs) |
33 | | n0sno 28245 |
. . . . . . . 8
⊢ (𝐴 ∈ ℕ0s
→ 𝐴 ∈ No ) |
34 | | 1sno 27806 |
. . . . . . . 8
⊢
1s ∈ No |
35 | | pncans 28028 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ 1s ∈ No ) →
((𝐴 +s
1s ) -s 1s ) = 𝐴) |
36 | 33, 34, 35 | sylancl 584 |
. . . . . . 7
⊢ (𝐴 ∈ ℕ0s
→ ((𝐴 +s
1s ) -s 1s ) = 𝐴) |
37 | 36 | eqcomd 2731 |
. . . . . 6
⊢ (𝐴 ∈ ℕ0s
→ 𝐴 = ((𝐴 +s 1s )
-s 1s )) |
38 | | rspceov 7467 |
. . . . . 6
⊢ (((𝐴 +s 1s )
∈ ℕs ∧ 1s ∈ ℕs ∧
𝐴 = ((𝐴 +s 1s ) -s
1s )) → ∃𝑛 ∈ ℕs ∃𝑚 ∈ ℕs
𝐴 = (𝑛 -s 𝑚)) |
39 | 30, 32, 37, 38 | syl3anc 1368 |
. . . . 5
⊢ (𝐴 ∈ ℕ0s
→ ∃𝑛 ∈
ℕs ∃𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚)) |
40 | 39 | adantl 480 |
. . . 4
⊢ ((𝐴 ∈
No ∧ 𝐴 ∈
ℕ0s) → ∃𝑛 ∈ ℕs ∃𝑚 ∈ ℕs
𝐴 = (𝑛 -s 𝑚)) |
41 | 31 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) →
1s ∈ ℕs) |
42 | 34 | a1i 11 |
. . . . . . . . 9
⊢ (𝐴 ∈
No → 1s ∈ No
) |
43 | | id 22 |
. . . . . . . . 9
⊢ (𝐴 ∈
No → 𝐴 ∈
No ) |
44 | 42, 43 | subsvald 28017 |
. . . . . . . 8
⊢ (𝐴 ∈
No → ( 1s -s 𝐴) = ( 1s +s (
-us ‘𝐴))) |
45 | | negscl 27994 |
. . . . . . . . 9
⊢ (𝐴 ∈
No → ( -us ‘𝐴) ∈ No
) |
46 | 42, 45 | addscomd 27930 |
. . . . . . . 8
⊢ (𝐴 ∈
No → ( 1s +s ( -us ‘𝐴)) = (( -us
‘𝐴) +s
1s )) |
47 | 44, 46 | eqtrd 2765 |
. . . . . . 7
⊢ (𝐴 ∈
No → ( 1s -s 𝐴) = (( -us ‘𝐴) +s 1s
)) |
48 | 47 | adantr 479 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → (
1s -s 𝐴) = (( -us ‘𝐴) +s 1s
)) |
49 | | n0p1nns 28276 |
. . . . . . 7
⊢ ((
-us ‘𝐴)
∈ ℕ0s → (( -us ‘𝐴) +s 1s ) ∈
ℕs) |
50 | 49 | adantl 480 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → ((
-us ‘𝐴)
+s 1s ) ∈ ℕs) |
51 | 48, 50 | eqeltrd 2825 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → (
1s -s 𝐴) ∈
ℕs) |
52 | 42, 43 | nncansd 28052 |
. . . . . . 7
⊢ (𝐴 ∈
No → ( 1s -s ( 1s -s
𝐴)) = 𝐴) |
53 | 52 | eqcomd 2731 |
. . . . . 6
⊢ (𝐴 ∈
No → 𝐴 = (
1s -s ( 1s -s 𝐴))) |
54 | 53 | adantr 479 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) → 𝐴 = ( 1s -s
( 1s -s 𝐴))) |
55 | | rspceov 7467 |
. . . . 5
⊢ ((
1s ∈ ℕs ∧ ( 1s -s
𝐴) ∈
ℕs ∧ 𝐴
= ( 1s -s ( 1s -s 𝐴))) → ∃𝑛 ∈ ℕs ∃𝑚 ∈ ℕs
𝐴 = (𝑛 -s 𝑚)) |
56 | 41, 51, 54, 55 | syl3anc 1368 |
. . . 4
⊢ ((𝐴 ∈
No ∧ ( -us ‘𝐴) ∈ ℕ0s) →
∃𝑛 ∈
ℕs ∃𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚)) |
57 | 40, 56 | jaodan 955 |
. . 3
⊢ ((𝐴 ∈
No ∧ (𝐴 ∈
ℕ0s ∨ ( -us ‘𝐴) ∈ ℕ0s)) →
∃𝑛 ∈
ℕs ∃𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚)) |
58 | 29, 57 | impbii 208 |
. 2
⊢
(∃𝑛 ∈
ℕs ∃𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚) ↔ (𝐴 ∈ No
∧ (𝐴 ∈
ℕ0s ∨ ( -us ‘𝐴) ∈
ℕ0s))) |
59 | 1, 58 | bitri 274 |
1
⊢ (𝐴 ∈ ℤs
↔ (𝐴 ∈ No ∧ (𝐴 ∈ ℕ0s ∨ (
-us ‘𝐴)
∈ ℕ0s))) |