MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elzn0s Structured version   Visualization version   GIF version

Theorem elzn0s 28402
Description: A surreal integer is a surreal that is a non-negative integer or whose negative is a non-negative integer. (Contributed by Scott Fenton, 26-May-2025.)
Assertion
Ref Expression
elzn0s (𝐴 ∈ ℤs ↔ (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))

Proof of Theorem elzn0s
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzs 28388 . 2 (𝐴 ∈ ℤs ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
2 nnsno 28347 . . . . . . 7 (𝑛 ∈ ℕs𝑛 No )
3 nnsno 28347 . . . . . . 7 (𝑚 ∈ ℕs𝑚 No )
4 subscl 28110 . . . . . . 7 ((𝑛 No 𝑚 No ) → (𝑛 -s 𝑚) ∈ No )
52, 3, 4syl2an 595 . . . . . 6 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑛 -s 𝑚) ∈ No )
6 sletric 27827 . . . . . . . 8 ((𝑚 No 𝑛 No ) → (𝑚 ≤s 𝑛𝑛 ≤s 𝑚))
73, 2, 6syl2anr 596 . . . . . . 7 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑚 ≤s 𝑛𝑛 ≤s 𝑚))
8 nnn0s 28350 . . . . . . . . 9 (𝑚 ∈ ℕs𝑚 ∈ ℕ0s)
9 nnn0s 28350 . . . . . . . . 9 (𝑛 ∈ ℕs𝑛 ∈ ℕ0s)
10 n0subs 28378 . . . . . . . . 9 ((𝑚 ∈ ℕ0s𝑛 ∈ ℕ0s) → (𝑚 ≤s 𝑛 ↔ (𝑛 -s 𝑚) ∈ ℕ0s))
118, 9, 10syl2anr 596 . . . . . . . 8 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑚 ≤s 𝑛 ↔ (𝑛 -s 𝑚) ∈ ℕ0s))
12 n0subs 28378 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s) → (𝑛 ≤s 𝑚 ↔ (𝑚 -s 𝑛) ∈ ℕ0s))
139, 8, 12syl2an 595 . . . . . . . . 9 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑛 ≤s 𝑚 ↔ (𝑚 -s 𝑛) ∈ ℕ0s))
142adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 𝑛 No )
153adantl 481 . . . . . . . . . . 11 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 𝑚 No )
1614, 15negsubsdi2d 28128 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( -us ‘(𝑛 -s 𝑚)) = (𝑚 -s 𝑛))
1716eleq1d 2829 . . . . . . . . 9 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s ↔ (𝑚 -s 𝑛) ∈ ℕ0s))
1813, 17bitr4d 282 . . . . . . . 8 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑛 ≤s 𝑚 ↔ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))
1911, 18orbi12d 917 . . . . . . 7 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ((𝑚 ≤s 𝑛𝑛 ≤s 𝑚) ↔ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s)))
207, 19mpbid 232 . . . . . 6 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))
215, 20jca 511 . . . . 5 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ((𝑛 -s 𝑚) ∈ No ∧ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s)))
22 eleq1 2832 . . . . . 6 (𝐴 = (𝑛 -s 𝑚) → (𝐴 No ↔ (𝑛 -s 𝑚) ∈ No ))
23 eleq1 2832 . . . . . . 7 (𝐴 = (𝑛 -s 𝑚) → (𝐴 ∈ ℕ0s ↔ (𝑛 -s 𝑚) ∈ ℕ0s))
24 fveq2 6920 . . . . . . . 8 (𝐴 = (𝑛 -s 𝑚) → ( -us𝐴) = ( -us ‘(𝑛 -s 𝑚)))
2524eleq1d 2829 . . . . . . 7 (𝐴 = (𝑛 -s 𝑚) → (( -us𝐴) ∈ ℕ0s ↔ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))
2623, 25orbi12d 917 . . . . . 6 (𝐴 = (𝑛 -s 𝑚) → ((𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s) ↔ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s)))
2722, 26anbi12d 631 . . . . 5 (𝐴 = (𝑛 -s 𝑚) → ((𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)) ↔ ((𝑛 -s 𝑚) ∈ No ∧ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))))
2821, 27syl5ibrcom 247 . . . 4 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝐴 = (𝑛 -s 𝑚) → (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s))))
2928rexlimivv 3207 . . 3 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚) → (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))
30 n0p1nns 28379 . . . . . 6 (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) ∈ ℕs)
31 1nns 28370 . . . . . . 7 1s ∈ ℕs
3231a1i 11 . . . . . 6 (𝐴 ∈ ℕ0s → 1s ∈ ℕs)
33 n0sno 28346 . . . . . . . 8 (𝐴 ∈ ℕ0s𝐴 No )
34 1sno 27890 . . . . . . . 8 1s No
35 pncans 28120 . . . . . . . 8 ((𝐴 No ∧ 1s No ) → ((𝐴 +s 1s ) -s 1s ) = 𝐴)
3633, 34, 35sylancl 585 . . . . . . 7 (𝐴 ∈ ℕ0s → ((𝐴 +s 1s ) -s 1s ) = 𝐴)
3736eqcomd 2746 . . . . . 6 (𝐴 ∈ ℕ0s𝐴 = ((𝐴 +s 1s ) -s 1s ))
38 rspceov 7497 . . . . . 6 (((𝐴 +s 1s ) ∈ ℕs ∧ 1s ∈ ℕs𝐴 = ((𝐴 +s 1s ) -s 1s )) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
3930, 32, 37, 38syl3anc 1371 . . . . 5 (𝐴 ∈ ℕ0s → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
4039adantl 481 . . . 4 ((𝐴 No 𝐴 ∈ ℕ0s) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
4131a1i 11 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → 1s ∈ ℕs)
4234a1i 11 . . . . . . . . 9 (𝐴 No → 1s No )
43 id 22 . . . . . . . . 9 (𝐴 No 𝐴 No )
4442, 43subsvald 28109 . . . . . . . 8 (𝐴 No → ( 1s -s 𝐴) = ( 1s +s ( -us𝐴)))
45 negscl 28086 . . . . . . . . 9 (𝐴 No → ( -us𝐴) ∈ No )
4642, 45addscomd 28018 . . . . . . . 8 (𝐴 No → ( 1s +s ( -us𝐴)) = (( -us𝐴) +s 1s ))
4744, 46eqtrd 2780 . . . . . . 7 (𝐴 No → ( 1s -s 𝐴) = (( -us𝐴) +s 1s ))
4847adantr 480 . . . . . 6 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( 1s -s 𝐴) = (( -us𝐴) +s 1s ))
49 n0p1nns 28379 . . . . . . 7 (( -us𝐴) ∈ ℕ0s → (( -us𝐴) +s 1s ) ∈ ℕs)
5049adantl 481 . . . . . 6 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → (( -us𝐴) +s 1s ) ∈ ℕs)
5148, 50eqeltrd 2844 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( 1s -s 𝐴) ∈ ℕs)
5242, 43nncansd 28144 . . . . . . 7 (𝐴 No → ( 1s -s ( 1s -s 𝐴)) = 𝐴)
5352eqcomd 2746 . . . . . 6 (𝐴 No 𝐴 = ( 1s -s ( 1s -s 𝐴)))
5453adantr 480 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → 𝐴 = ( 1s -s ( 1s -s 𝐴)))
55 rspceov 7497 . . . . 5 (( 1s ∈ ℕs ∧ ( 1s -s 𝐴) ∈ ℕs𝐴 = ( 1s -s ( 1s -s 𝐴))) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
5641, 51, 54, 55syl3anc 1371 . . . 4 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
5740, 56jaodan 958 . . 3 ((𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
5829, 57impbii 209 . 2 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚) ↔ (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))
591, 58bitri 275 1 (𝐴 ∈ ℤs ↔ (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448   No csur 27702   ≤s csle 27807   1s c1s 27886   +s cadds 28010   -us cnegs 28069   -s csubs 28070  0scnn0s 28336  scnns 28337  sczs 28382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-n0s 28338  df-nns 28339  df-zs 28383
This theorem is referenced by:  elzs2  28403  zsbday  28410  zscut  28411
  Copyright terms: Public domain W3C validator