MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elzn0s Structured version   Visualization version   GIF version

Theorem elzn0s 28320
Description: A surreal integer is a surreal that is a non-negative integer or whose negative is a non-negative integer. (Contributed by Scott Fenton, 26-May-2025.)
Assertion
Ref Expression
elzn0s (𝐴 ∈ ℤs ↔ (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))

Proof of Theorem elzn0s
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elzs 28306 . 2 (𝐴 ∈ ℤs ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
2 nnsno 28251 . . . . . . 7 (𝑛 ∈ ℕs𝑛 No )
3 nnsno 28251 . . . . . . 7 (𝑚 ∈ ℕs𝑚 No )
4 subscl 28000 . . . . . . 7 ((𝑛 No 𝑚 No ) → (𝑛 -s 𝑚) ∈ No )
52, 3, 4syl2an 596 . . . . . 6 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑛 -s 𝑚) ∈ No )
6 sletric 27701 . . . . . . . 8 ((𝑚 No 𝑛 No ) → (𝑚 ≤s 𝑛𝑛 ≤s 𝑚))
73, 2, 6syl2anr 597 . . . . . . 7 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑚 ≤s 𝑛𝑛 ≤s 𝑚))
8 nnn0s 28254 . . . . . . . . 9 (𝑚 ∈ ℕs𝑚 ∈ ℕ0s)
9 nnn0s 28254 . . . . . . . . 9 (𝑛 ∈ ℕs𝑛 ∈ ℕ0s)
10 n0subs 28287 . . . . . . . . 9 ((𝑚 ∈ ℕ0s𝑛 ∈ ℕ0s) → (𝑚 ≤s 𝑛 ↔ (𝑛 -s 𝑚) ∈ ℕ0s))
118, 9, 10syl2anr 597 . . . . . . . 8 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑚 ≤s 𝑛 ↔ (𝑛 -s 𝑚) ∈ ℕ0s))
12 n0subs 28287 . . . . . . . . . 10 ((𝑛 ∈ ℕ0s𝑚 ∈ ℕ0s) → (𝑛 ≤s 𝑚 ↔ (𝑚 -s 𝑛) ∈ ℕ0s))
139, 8, 12syl2an 596 . . . . . . . . 9 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑛 ≤s 𝑚 ↔ (𝑚 -s 𝑛) ∈ ℕ0s))
142adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 𝑛 No )
153adantl 481 . . . . . . . . . . 11 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 𝑚 No )
1614, 15negsubsdi2d 28018 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( -us ‘(𝑛 -s 𝑚)) = (𝑚 -s 𝑛))
1716eleq1d 2816 . . . . . . . . 9 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s ↔ (𝑚 -s 𝑛) ∈ ℕ0s))
1813, 17bitr4d 282 . . . . . . . 8 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑛 ≤s 𝑚 ↔ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))
1911, 18orbi12d 918 . . . . . . 7 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ((𝑚 ≤s 𝑛𝑛 ≤s 𝑚) ↔ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s)))
207, 19mpbid 232 . . . . . 6 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))
215, 20jca 511 . . . . 5 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ((𝑛 -s 𝑚) ∈ No ∧ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s)))
22 eleq1 2819 . . . . . 6 (𝐴 = (𝑛 -s 𝑚) → (𝐴 No ↔ (𝑛 -s 𝑚) ∈ No ))
23 eleq1 2819 . . . . . . 7 (𝐴 = (𝑛 -s 𝑚) → (𝐴 ∈ ℕ0s ↔ (𝑛 -s 𝑚) ∈ ℕ0s))
24 fveq2 6822 . . . . . . . 8 (𝐴 = (𝑛 -s 𝑚) → ( -us𝐴) = ( -us ‘(𝑛 -s 𝑚)))
2524eleq1d 2816 . . . . . . 7 (𝐴 = (𝑛 -s 𝑚) → (( -us𝐴) ∈ ℕ0s ↔ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))
2623, 25orbi12d 918 . . . . . 6 (𝐴 = (𝑛 -s 𝑚) → ((𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s) ↔ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s)))
2722, 26anbi12d 632 . . . . 5 (𝐴 = (𝑛 -s 𝑚) → ((𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)) ↔ ((𝑛 -s 𝑚) ∈ No ∧ ((𝑛 -s 𝑚) ∈ ℕ0s ∨ ( -us ‘(𝑛 -s 𝑚)) ∈ ℕ0s))))
2821, 27syl5ibrcom 247 . . . 4 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝐴 = (𝑛 -s 𝑚) → (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s))))
2928rexlimivv 3174 . . 3 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚) → (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))
30 n0p1nns 28294 . . . . . 6 (𝐴 ∈ ℕ0s → (𝐴 +s 1s ) ∈ ℕs)
31 1nns 28275 . . . . . . 7 1s ∈ ℕs
3231a1i 11 . . . . . 6 (𝐴 ∈ ℕ0s → 1s ∈ ℕs)
33 n0sno 28250 . . . . . . . 8 (𝐴 ∈ ℕ0s𝐴 No )
34 1sno 27769 . . . . . . . 8 1s No
35 pncans 28010 . . . . . . . 8 ((𝐴 No ∧ 1s No ) → ((𝐴 +s 1s ) -s 1s ) = 𝐴)
3633, 34, 35sylancl 586 . . . . . . 7 (𝐴 ∈ ℕ0s → ((𝐴 +s 1s ) -s 1s ) = 𝐴)
3736eqcomd 2737 . . . . . 6 (𝐴 ∈ ℕ0s𝐴 = ((𝐴 +s 1s ) -s 1s ))
38 rspceov 7395 . . . . . 6 (((𝐴 +s 1s ) ∈ ℕs ∧ 1s ∈ ℕs𝐴 = ((𝐴 +s 1s ) -s 1s )) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
3930, 32, 37, 38syl3anc 1373 . . . . 5 (𝐴 ∈ ℕ0s → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
4039adantl 481 . . . 4 ((𝐴 No 𝐴 ∈ ℕ0s) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
4131a1i 11 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → 1s ∈ ℕs)
4234a1i 11 . . . . . . . . 9 (𝐴 No → 1s No )
43 id 22 . . . . . . . . 9 (𝐴 No 𝐴 No )
4442, 43subsvald 27999 . . . . . . . 8 (𝐴 No → ( 1s -s 𝐴) = ( 1s +s ( -us𝐴)))
45 negscl 27976 . . . . . . . . 9 (𝐴 No → ( -us𝐴) ∈ No )
4642, 45addscomd 27908 . . . . . . . 8 (𝐴 No → ( 1s +s ( -us𝐴)) = (( -us𝐴) +s 1s ))
4744, 46eqtrd 2766 . . . . . . 7 (𝐴 No → ( 1s -s 𝐴) = (( -us𝐴) +s 1s ))
4847adantr 480 . . . . . 6 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( 1s -s 𝐴) = (( -us𝐴) +s 1s ))
49 n0p1nns 28294 . . . . . . 7 (( -us𝐴) ∈ ℕ0s → (( -us𝐴) +s 1s ) ∈ ℕs)
5049adantl 481 . . . . . 6 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → (( -us𝐴) +s 1s ) ∈ ℕs)
5148, 50eqeltrd 2831 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ( 1s -s 𝐴) ∈ ℕs)
5242, 43nncansd 28034 . . . . . . 7 (𝐴 No → ( 1s -s ( 1s -s 𝐴)) = 𝐴)
5352eqcomd 2737 . . . . . 6 (𝐴 No 𝐴 = ( 1s -s ( 1s -s 𝐴)))
5453adantr 480 . . . . 5 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → 𝐴 = ( 1s -s ( 1s -s 𝐴)))
55 rspceov 7395 . . . . 5 (( 1s ∈ ℕs ∧ ( 1s -s 𝐴) ∈ ℕs𝐴 = ( 1s -s ( 1s -s 𝐴))) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
5641, 51, 54, 55syl3anc 1373 . . . 4 ((𝐴 No ∧ ( -us𝐴) ∈ ℕ0s) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
5740, 56jaodan 959 . . 3 ((𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚))
5829, 57impbii 209 . 2 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝐴 = (𝑛 -s 𝑚) ↔ (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))
591, 58bitri 275 1 (𝐴 ∈ ℤs ↔ (𝐴 No ∧ (𝐴 ∈ ℕ0s ∨ ( -us𝐴) ∈ ℕ0s)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5091  cfv 6481  (class class class)co 7346   No csur 27576   ≤s csle 27681   1s c1s 27765   +s cadds 27900   -us cnegs 27959   -s csubs 27960  0scnn0s 28240  scnns 28241  sczs 28300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27579  df-slt 27580  df-bday 27581  df-sle 27682  df-sslt 27719  df-scut 27721  df-0s 27766  df-1s 27767  df-made 27786  df-old 27787  df-left 27789  df-right 27790  df-norec 27879  df-norec2 27890  df-adds 27901  df-negs 27961  df-subs 27962  df-n0s 28242  df-nns 28243  df-zs 28301
This theorem is referenced by:  elzs2  28321  zsbday  28328  zscut  28329
  Copyright terms: Public domain W3C validator