MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addhalfcut Structured version   Visualization version   GIF version

Theorem addhalfcut 28428
Description: The cut of a surreal non-negative integer and its successor is the original number plus one half. Part of theorem 4.2 of [Gonshor] p. 30. (Contributed by Scott Fenton, 13-Aug-2025.)
Hypothesis
Ref Expression
addhalfcut.1 (𝜑𝐴 ∈ ℕ0s)
Assertion
Ref Expression
addhalfcut (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = (𝐴 +s ( 1s /su 2s)))

Proof of Theorem addhalfcut
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addhalfcut.1 . . . 4 (𝜑𝐴 ∈ ℕ0s)
21n0snod 28339 . . 3 (𝜑𝐴 No )
3 1sno 27881 . . . . 5 1s No
43a1i 11 . . . 4 (𝜑 → 1s No )
52, 4addscld 28022 . . 3 (𝜑 → (𝐴 +s 1s ) ∈ No )
62sltp1d 28057 . . 3 (𝜑𝐴 <s (𝐴 +s 1s ))
7 no2times 28410 . . . . . . 7 (𝐴 No → (2s ·s 𝐴) = (𝐴 +s 𝐴))
82, 7syl 17 . . . . . 6 (𝜑 → (2s ·s 𝐴) = (𝐴 +s 𝐴))
98oveq1d 7460 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ((𝐴 +s 𝐴) +s 1s ))
102, 2, 4addsassd 28048 . . . . 5 (𝜑 → ((𝐴 +s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s )))
119, 10eqtr2d 2775 . . . 4 (𝜑 → (𝐴 +s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s 1s ))
12 2nns 28411 . . . . . . . . . 10 2s ∈ ℕs
13 nnn0s 28341 . . . . . . . . . 10 (2s ∈ ℕs → 2s ∈ ℕ0s)
1412, 13ax-mp 5 . . . . . . . . 9 2s ∈ ℕ0s
1514a1i 11 . . . . . . . 8 (𝜑 → 2s ∈ ℕ0s)
16 n0mulscl 28357 . . . . . . . 8 ((2s ∈ ℕ0s𝐴 ∈ ℕ0s) → (2s ·s 𝐴) ∈ ℕ0s)
1715, 1, 16syl2anc 583 . . . . . . 7 (𝜑 → (2s ·s 𝐴) ∈ ℕ0s)
18 1n0s 28360 . . . . . . . 8 1s ∈ ℕ0s
1918a1i 11 . . . . . . 7 (𝜑 → 1s ∈ ℕ0s)
20 n0addscl 28356 . . . . . . 7 (((2s ·s 𝐴) ∈ ℕ0s ∧ 1s ∈ ℕ0s) → ((2s ·s 𝐴) +s 1s ) ∈ ℕ0s)
2117, 19, 20syl2anc 583 . . . . . 6 (𝜑 → ((2s ·s 𝐴) +s 1s ) ∈ ℕ0s)
22 n0scut 28347 . . . . . 6 (((2s ·s 𝐴) +s 1s ) ∈ ℕ0s → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s ∅))
2321, 22syl 17 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s ∅))
24 2sno 28412 . . . . . . . . . 10 2s No
2524a1i 11 . . . . . . . . 9 (𝜑 → 2s No )
2625, 2mulscld 28170 . . . . . . . 8 (𝜑 → (2s ·s 𝐴) ∈ No )
27 pncans 28111 . . . . . . . 8 (((2s ·s 𝐴) ∈ No ∧ 1s No ) → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2826, 4, 27syl2anc 583 . . . . . . 7 (𝜑 → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2928sneqd 4660 . . . . . 6 (𝜑 → {(((2s ·s 𝐴) +s 1s ) -s 1s )} = {(2s ·s 𝐴)})
3029oveq1d 7460 . . . . 5 (𝜑 → ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s ∅) = ({(2s ·s 𝐴)} |s ∅))
3123, 30eqtrd 2774 . . . 4 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ({(2s ·s 𝐴)} |s ∅))
32 snelpwi 5466 . . . . . 6 ((2s ·s 𝐴) ∈ No → {(2s ·s 𝐴)} ∈ 𝒫 No )
33 nulssgt 27852 . . . . . 6 ({(2s ·s 𝐴)} ∈ 𝒫 No → {(2s ·s 𝐴)} <<s ∅)
3426, 32, 333syl 18 . . . . 5 (𝜑 → {(2s ·s 𝐴)} <<s ∅)
35 slerflex 27817 . . . . . . 7 ((2s ·s 𝐴) ∈ No → (2s ·s 𝐴) ≤s (2s ·s 𝐴))
3626, 35syl 17 . . . . . 6 (𝜑 → (2s ·s 𝐴) ≤s (2s ·s 𝐴))
37 ovex 7478 . . . . . . . . 9 (2s ·s 𝐴) ∈ V
38 breq2 5173 . . . . . . . . 9 (𝑦 = (2s ·s 𝐴) → (𝑥 ≤s 𝑦𝑥 ≤s (2s ·s 𝐴)))
3937, 38rexsn 4706 . . . . . . . 8 (∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦𝑥 ≤s (2s ·s 𝐴))
4039ralbii 3095 . . . . . . 7 (∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦 ↔ ∀𝑥 ∈ {(2s ·s 𝐴)}𝑥 ≤s (2s ·s 𝐴))
41 breq1 5172 . . . . . . . 8 (𝑥 = (2s ·s 𝐴) → (𝑥 ≤s (2s ·s 𝐴) ↔ (2s ·s 𝐴) ≤s (2s ·s 𝐴)))
4237, 41ralsn 4705 . . . . . . 7 (∀𝑥 ∈ {(2s ·s 𝐴)}𝑥 ≤s (2s ·s 𝐴) ↔ (2s ·s 𝐴) ≤s (2s ·s 𝐴))
4340, 42bitri 275 . . . . . 6 (∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦 ↔ (2s ·s 𝐴) ≤s (2s ·s 𝐴))
4436, 43sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦)
45 ral0 4532 . . . . . 6 𝑥 ∈ ∅ ∃𝑦 ∈ {(2s ·s (𝐴 +s 1s ))}𝑦 ≤s 𝑥
4645a1i 11 . . . . 5 (𝜑 → ∀𝑥 ∈ ∅ ∃𝑦 ∈ {(2s ·s (𝐴 +s 1s ))}𝑦 ≤s 𝑥)
4726, 4addscld 28022 . . . . . . 7 (𝜑 → ((2s ·s 𝐴) +s 1s ) ∈ No )
4826sltp1d 28057 . . . . . . 7 (𝜑 → (2s ·s 𝐴) <s ((2s ·s 𝐴) +s 1s ))
4926, 47, 48ssltsn 27846 . . . . . 6 (𝜑 → {(2s ·s 𝐴)} <<s {((2s ·s 𝐴) +s 1s )})
5031sneqd 4660 . . . . . 6 (𝜑 → {((2s ·s 𝐴) +s 1s )} = {({(2s ·s 𝐴)} |s ∅)})
5149, 50breqtrd 5195 . . . . 5 (𝜑 → {(2s ·s 𝐴)} <<s {({(2s ·s 𝐴)} |s ∅)})
5225, 5mulscld 28170 . . . . . . 7 (𝜑 → (2s ·s (𝐴 +s 1s )) ∈ No )
534sltp1d 28057 . . . . . . . . . 10 (𝜑 → 1s <s ( 1s +s 1s ))
54 1p1e2s 28409 . . . . . . . . . 10 ( 1s +s 1s ) = 2s
5553, 54breqtrdi 5210 . . . . . . . . 9 (𝜑 → 1s <s 2s)
564, 25, 26sltadd2d 28039 . . . . . . . . 9 (𝜑 → ( 1s <s 2s ↔ ((2s ·s 𝐴) +s 1s ) <s ((2s ·s 𝐴) +s 2s)))
5755, 56mpbid 232 . . . . . . . 8 (𝜑 → ((2s ·s 𝐴) +s 1s ) <s ((2s ·s 𝐴) +s 2s))
5825, 2, 4addsdid 28191 . . . . . . . . 9 (𝜑 → (2s ·s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s (2s ·s 1s )))
59 mulsrid 28148 . . . . . . . . . . 11 (2s No → (2s ·s 1s ) = 2s)
6024, 59ax-mp 5 . . . . . . . . . 10 (2s ·s 1s ) = 2s
6160oveq2i 7456 . . . . . . . . 9 ((2s ·s 𝐴) +s (2s ·s 1s )) = ((2s ·s 𝐴) +s 2s)
6258, 61eqtrdi 2790 . . . . . . . 8 (𝜑 → (2s ·s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s 2s))
6357, 62breqtrrd 5197 . . . . . . 7 (𝜑 → ((2s ·s 𝐴) +s 1s ) <s (2s ·s (𝐴 +s 1s )))
6447, 52, 63ssltsn 27846 . . . . . 6 (𝜑 → {((2s ·s 𝐴) +s 1s )} <<s {(2s ·s (𝐴 +s 1s ))})
6550, 64eqbrtrrd 5193 . . . . 5 (𝜑 → {({(2s ·s 𝐴)} |s ∅)} <<s {(2s ·s (𝐴 +s 1s ))})
6634, 44, 46, 51, 65cofcut1d 27964 . . . 4 (𝜑 → ({(2s ·s 𝐴)} |s ∅) = ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}))
6711, 31, 663eqtrrd 2779 . . 3 (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}) = (𝐴 +s (𝐴 +s 1s )))
68 eqid 2734 . . 3 ({𝐴} |s {(𝐴 +s 1s )}) = ({𝐴} |s {(𝐴 +s 1s )})
692, 5, 6, 67, 68halfcut 28425 . 2 (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = ((𝐴 +s (𝐴 +s 1s )) /su 2s))
7011oveq1d 7460 . 2 (𝜑 → ((𝐴 +s (𝐴 +s 1s )) /su 2s) = (((2s ·s 𝐴) +s 1s ) /su 2s))
71 2ne0s 28413 . . . . 5 2s ≠ 0s
7271a1i 11 . . . 4 (𝜑 → 2s ≠ 0s )
7326, 4, 25, 72divsdird 28268 . . 3 (𝜑 → (((2s ·s 𝐴) +s 1s ) /su 2s) = (((2s ·s 𝐴) /su 2s) +s ( 1s /su 2s)))
742, 25, 72divscan3d 28269 . . . 4 (𝜑 → ((2s ·s 𝐴) /su 2s) = 𝐴)
7574oveq1d 7460 . . 3 (𝜑 → (((2s ·s 𝐴) /su 2s) +s ( 1s /su 2s)) = (𝐴 +s ( 1s /su 2s)))
7673, 75eqtrd 2774 . 2 (𝜑 → (((2s ·s 𝐴) +s 1s ) /su 2s) = (𝐴 +s ( 1s /su 2s)))
7769, 70, 763eqtrd 2778 1 (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = (𝐴 +s ( 1s /su 2s)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2103  wne 2942  wral 3063  wrex 3072  c0 4347  𝒫 cpw 4622  {csn 4648   class class class wbr 5169  (class class class)co 7445   No csur 27693   <s cslt 27694   ≤s csle 27798   <<s csslt 27834   |s cscut 27836   0s c0s 27876   1s c1s 27877   +s cadds 28001   -s csubs 28061   ·s cmuls 28141   /su cdivs 28222  0scnn0s 28327  scnns 28328  2sc2s 28403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766  ax-dc 10511
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-rmo 3383  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4973  df-iun 5021  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-se 5655  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-pred 6331  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-riota 7401  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-frecs 8318  df-wrecs 8349  df-recs 8423  df-rdg 8462  df-1o 8518  df-2o 8519  df-oadd 8522  df-nadd 8718  df-no 27696  df-slt 27697  df-bday 27698  df-sle 27799  df-sslt 27835  df-scut 27837  df-0s 27878  df-1s 27879  df-made 27895  df-old 27896  df-left 27898  df-right 27899  df-norec 27980  df-norec2 27991  df-adds 28002  df-negs 28062  df-subs 28063  df-muls 28142  df-divs 28223  df-n0s 28329  df-nns 28330  df-2s 28404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator