MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addhalfcut Structured version   Visualization version   GIF version

Theorem addhalfcut 28372
Description: The cut of a surreal non-negative integer and its successor is the original number plus one half. Part of theorem 4.2 of [Gonshor] p. 30. (Contributed by Scott Fenton, 13-Aug-2025.)
Hypothesis
Ref Expression
addhalfcut.1 (𝜑𝐴 ∈ ℕ0s)
Assertion
Ref Expression
addhalfcut (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = (𝐴 +s ( 1s /su 2s)))

Proof of Theorem addhalfcut
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addhalfcut.1 . . . 4 (𝜑𝐴 ∈ ℕ0s)
21n0snod 28247 . . 3 (𝜑𝐴 No )
3 1sno 27764 . . . . 5 1s No
43a1i 11 . . . 4 (𝜑 → 1s No )
52, 4addscld 27916 . . 3 (𝜑 → (𝐴 +s 1s ) ∈ No )
62sltp1d 27951 . . 3 (𝜑𝐴 <s (𝐴 +s 1s ))
7 no2times 28333 . . . . . . 7 (𝐴 No → (2s ·s 𝐴) = (𝐴 +s 𝐴))
82, 7syl 17 . . . . . 6 (𝜑 → (2s ·s 𝐴) = (𝐴 +s 𝐴))
98oveq1d 7356 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ((𝐴 +s 𝐴) +s 1s ))
102, 2, 4addsassd 27942 . . . . 5 (𝜑 → ((𝐴 +s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s )))
119, 10eqtr2d 2766 . . . 4 (𝜑 → (𝐴 +s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s 1s ))
12 2nns 28334 . . . . . . . . . 10 2s ∈ ℕs
13 nnn0s 28249 . . . . . . . . . 10 (2s ∈ ℕs → 2s ∈ ℕ0s)
1412, 13ax-mp 5 . . . . . . . . 9 2s ∈ ℕ0s
1514a1i 11 . . . . . . . 8 (𝜑 → 2s ∈ ℕ0s)
16 n0mulscl 28266 . . . . . . . 8 ((2s ∈ ℕ0s𝐴 ∈ ℕ0s) → (2s ·s 𝐴) ∈ ℕ0s)
1715, 1, 16syl2anc 584 . . . . . . 7 (𝜑 → (2s ·s 𝐴) ∈ ℕ0s)
18 1n0s 28269 . . . . . . . 8 1s ∈ ℕ0s
1918a1i 11 . . . . . . 7 (𝜑 → 1s ∈ ℕ0s)
20 n0addscl 28265 . . . . . . 7 (((2s ·s 𝐴) ∈ ℕ0s ∧ 1s ∈ ℕ0s) → ((2s ·s 𝐴) +s 1s ) ∈ ℕ0s)
2117, 19, 20syl2anc 584 . . . . . 6 (𝜑 → ((2s ·s 𝐴) +s 1s ) ∈ ℕ0s)
22 n0scut 28255 . . . . . 6 (((2s ·s 𝐴) +s 1s ) ∈ ℕ0s → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s ∅))
2321, 22syl 17 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s ∅))
24 2sno 28335 . . . . . . . . . 10 2s No
2524a1i 11 . . . . . . . . 9 (𝜑 → 2s No )
2625, 2mulscld 28067 . . . . . . . 8 (𝜑 → (2s ·s 𝐴) ∈ No )
27 pncans 28005 . . . . . . . 8 (((2s ·s 𝐴) ∈ No ∧ 1s No ) → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2826, 4, 27syl2anc 584 . . . . . . 7 (𝜑 → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2928sneqd 4586 . . . . . 6 (𝜑 → {(((2s ·s 𝐴) +s 1s ) -s 1s )} = {(2s ·s 𝐴)})
3029oveq1d 7356 . . . . 5 (𝜑 → ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s ∅) = ({(2s ·s 𝐴)} |s ∅))
3123, 30eqtrd 2765 . . . 4 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ({(2s ·s 𝐴)} |s ∅))
32 snelpwi 5383 . . . . . 6 ((2s ·s 𝐴) ∈ No → {(2s ·s 𝐴)} ∈ 𝒫 No )
33 nulssgt 27732 . . . . . 6 ({(2s ·s 𝐴)} ∈ 𝒫 No → {(2s ·s 𝐴)} <<s ∅)
3426, 32, 333syl 18 . . . . 5 (𝜑 → {(2s ·s 𝐴)} <<s ∅)
35 slerflex 27695 . . . . . . 7 ((2s ·s 𝐴) ∈ No → (2s ·s 𝐴) ≤s (2s ·s 𝐴))
3626, 35syl 17 . . . . . 6 (𝜑 → (2s ·s 𝐴) ≤s (2s ·s 𝐴))
37 ovex 7374 . . . . . . . . 9 (2s ·s 𝐴) ∈ V
38 breq2 5093 . . . . . . . . 9 (𝑦 = (2s ·s 𝐴) → (𝑥 ≤s 𝑦𝑥 ≤s (2s ·s 𝐴)))
3937, 38rexsn 4633 . . . . . . . 8 (∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦𝑥 ≤s (2s ·s 𝐴))
4039ralbii 3076 . . . . . . 7 (∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦 ↔ ∀𝑥 ∈ {(2s ·s 𝐴)}𝑥 ≤s (2s ·s 𝐴))
41 breq1 5092 . . . . . . . 8 (𝑥 = (2s ·s 𝐴) → (𝑥 ≤s (2s ·s 𝐴) ↔ (2s ·s 𝐴) ≤s (2s ·s 𝐴)))
4237, 41ralsn 4632 . . . . . . 7 (∀𝑥 ∈ {(2s ·s 𝐴)}𝑥 ≤s (2s ·s 𝐴) ↔ (2s ·s 𝐴) ≤s (2s ·s 𝐴))
4340, 42bitri 275 . . . . . 6 (∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦 ↔ (2s ·s 𝐴) ≤s (2s ·s 𝐴))
4436, 43sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦)
45 ral0 4461 . . . . . 6 𝑥 ∈ ∅ ∃𝑦 ∈ {(2s ·s (𝐴 +s 1s ))}𝑦 ≤s 𝑥
4645a1i 11 . . . . 5 (𝜑 → ∀𝑥 ∈ ∅ ∃𝑦 ∈ {(2s ·s (𝐴 +s 1s ))}𝑦 ≤s 𝑥)
4726, 4addscld 27916 . . . . . . 7 (𝜑 → ((2s ·s 𝐴) +s 1s ) ∈ No )
4826sltp1d 27951 . . . . . . 7 (𝜑 → (2s ·s 𝐴) <s ((2s ·s 𝐴) +s 1s ))
4926, 47, 48ssltsn 27726 . . . . . 6 (𝜑 → {(2s ·s 𝐴)} <<s {((2s ·s 𝐴) +s 1s )})
5031sneqd 4586 . . . . . 6 (𝜑 → {((2s ·s 𝐴) +s 1s )} = {({(2s ·s 𝐴)} |s ∅)})
5149, 50breqtrd 5115 . . . . 5 (𝜑 → {(2s ·s 𝐴)} <<s {({(2s ·s 𝐴)} |s ∅)})
5225, 5mulscld 28067 . . . . . . 7 (𝜑 → (2s ·s (𝐴 +s 1s )) ∈ No )
534sltp1d 27951 . . . . . . . . . 10 (𝜑 → 1s <s ( 1s +s 1s ))
54 1p1e2s 28332 . . . . . . . . . 10 ( 1s +s 1s ) = 2s
5553, 54breqtrdi 5130 . . . . . . . . 9 (𝜑 → 1s <s 2s)
564, 25, 26sltadd2d 27933 . . . . . . . . 9 (𝜑 → ( 1s <s 2s ↔ ((2s ·s 𝐴) +s 1s ) <s ((2s ·s 𝐴) +s 2s)))
5755, 56mpbid 232 . . . . . . . 8 (𝜑 → ((2s ·s 𝐴) +s 1s ) <s ((2s ·s 𝐴) +s 2s))
5825, 2, 4addsdid 28088 . . . . . . . . 9 (𝜑 → (2s ·s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s (2s ·s 1s )))
59 mulsrid 28045 . . . . . . . . . . 11 (2s No → (2s ·s 1s ) = 2s)
6024, 59ax-mp 5 . . . . . . . . . 10 (2s ·s 1s ) = 2s
6160oveq2i 7352 . . . . . . . . 9 ((2s ·s 𝐴) +s (2s ·s 1s )) = ((2s ·s 𝐴) +s 2s)
6258, 61eqtrdi 2781 . . . . . . . 8 (𝜑 → (2s ·s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s 2s))
6357, 62breqtrrd 5117 . . . . . . 7 (𝜑 → ((2s ·s 𝐴) +s 1s ) <s (2s ·s (𝐴 +s 1s )))
6447, 52, 63ssltsn 27726 . . . . . 6 (𝜑 → {((2s ·s 𝐴) +s 1s )} <<s {(2s ·s (𝐴 +s 1s ))})
6550, 64eqbrtrrd 5113 . . . . 5 (𝜑 → {({(2s ·s 𝐴)} |s ∅)} <<s {(2s ·s (𝐴 +s 1s ))})
6634, 44, 46, 51, 65cofcut1d 27858 . . . 4 (𝜑 → ({(2s ·s 𝐴)} |s ∅) = ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}))
6711, 31, 663eqtrrd 2770 . . 3 (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}) = (𝐴 +s (𝐴 +s 1s )))
68 eqid 2730 . . 3 ({𝐴} |s {(𝐴 +s 1s )}) = ({𝐴} |s {(𝐴 +s 1s )})
692, 5, 6, 67, 68halfcut 28371 . 2 (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = ((𝐴 +s (𝐴 +s 1s )) /su 2s))
7011oveq1d 7356 . 2 (𝜑 → ((𝐴 +s (𝐴 +s 1s )) /su 2s) = (((2s ·s 𝐴) +s 1s ) /su 2s))
71 2ne0s 28336 . . . . 5 2s ≠ 0s
7271a1i 11 . . . 4 (𝜑 → 2s ≠ 0s )
7326, 4, 25, 72divsdird 28166 . . 3 (𝜑 → (((2s ·s 𝐴) +s 1s ) /su 2s) = (((2s ·s 𝐴) /su 2s) +s ( 1s /su 2s)))
742, 25, 72divscan3d 28167 . . . 4 (𝜑 → ((2s ·s 𝐴) /su 2s) = 𝐴)
7574oveq1d 7356 . . 3 (𝜑 → (((2s ·s 𝐴) /su 2s) +s ( 1s /su 2s)) = (𝐴 +s ( 1s /su 2s)))
7673, 75eqtrd 2765 . 2 (𝜑 → (((2s ·s 𝐴) +s 1s ) /su 2s) = (𝐴 +s ( 1s /su 2s)))
7769, 70, 763eqtrd 2769 1 (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = (𝐴 +s ( 1s /su 2s)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  wne 2926  wral 3045  wrex 3054  c0 4281  𝒫 cpw 4548  {csn 4574   class class class wbr 5089  (class class class)co 7341   No csur 27571   <s cslt 27572   ≤s csle 27676   <<s csslt 27713   |s cscut 27715   0s c0s 27759   1s c1s 27760   +s cadds 27895   -s csubs 27955   ·s cmuls 28038   /su cdivs 28119  0scnn0s 28235  scnns 28236  2sc2s 28326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-dc 10329
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-ot 4583  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-nadd 8576  df-no 27574  df-slt 27575  df-bday 27576  df-sle 27677  df-sslt 27714  df-scut 27716  df-0s 27761  df-1s 27762  df-made 27781  df-old 27782  df-left 27784  df-right 27785  df-norec 27874  df-norec2 27885  df-adds 27896  df-negs 27956  df-subs 27957  df-muls 28039  df-divs 28120  df-n0s 28237  df-nns 28238  df-2s 28327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator