| Step | Hyp | Ref
| Expression |
| 1 | | addhalfcut.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈
ℕ0s) |
| 2 | 1 | n0snod 28285 |
. . 3
⊢ (𝜑 → 𝐴 ∈ No
) |
| 3 | | 1sno 27827 |
. . . . 5
⊢
1s ∈ No |
| 4 | 3 | a1i 11 |
. . . 4
⊢ (𝜑 → 1s ∈ No ) |
| 5 | 2, 4 | addscld 27968 |
. . 3
⊢ (𝜑 → (𝐴 +s 1s ) ∈ No ) |
| 6 | 2 | sltp1d 28003 |
. . 3
⊢ (𝜑 → 𝐴 <s (𝐴 +s 1s
)) |
| 7 | | no2times 28356 |
. . . . . . 7
⊢ (𝐴 ∈
No → (2s ·s 𝐴) = (𝐴 +s 𝐴)) |
| 8 | 2, 7 | syl 17 |
. . . . . 6
⊢ (𝜑 → (2s
·s 𝐴) =
(𝐴 +s 𝐴)) |
| 9 | 8 | oveq1d 7429 |
. . . . 5
⊢ (𝜑 → ((2s
·s 𝐴)
+s 1s ) = ((𝐴 +s 𝐴) +s 1s
)) |
| 10 | 2, 2, 4 | addsassd 27994 |
. . . . 5
⊢ (𝜑 → ((𝐴 +s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s
))) |
| 11 | 9, 10 | eqtr2d 2770 |
. . . 4
⊢ (𝜑 → (𝐴 +s (𝐴 +s 1s )) =
((2s ·s 𝐴) +s 1s
)) |
| 12 | | 2nns 28357 |
. . . . . . . . . 10
⊢
2s ∈ ℕs |
| 13 | | nnn0s 28287 |
. . . . . . . . . 10
⊢
(2s ∈ ℕs → 2s ∈
ℕ0s) |
| 14 | 12, 13 | ax-mp 5 |
. . . . . . . . 9
⊢
2s ∈ ℕ0s |
| 15 | 14 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 2s ∈
ℕ0s) |
| 16 | | n0mulscl 28303 |
. . . . . . . 8
⊢
((2s ∈ ℕ0s ∧ 𝐴 ∈ ℕ0s) →
(2s ·s 𝐴) ∈
ℕ0s) |
| 17 | 15, 1, 16 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (2s
·s 𝐴)
∈ ℕ0s) |
| 18 | | 1n0s 28306 |
. . . . . . . 8
⊢
1s ∈ ℕ0s |
| 19 | 18 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 1s ∈
ℕ0s) |
| 20 | | n0addscl 28302 |
. . . . . . 7
⊢
(((2s ·s 𝐴) ∈ ℕ0s ∧
1s ∈ ℕ0s) → ((2s
·s 𝐴)
+s 1s ) ∈ ℕ0s) |
| 21 | 17, 19, 20 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((2s
·s 𝐴)
+s 1s ) ∈ ℕ0s) |
| 22 | | n0scut 28293 |
. . . . . 6
⊢
(((2s ·s 𝐴) +s 1s ) ∈
ℕ0s → ((2s ·s 𝐴) +s 1s )
= ({(((2s ·s 𝐴) +s 1s )
-s 1s )} |s ∅)) |
| 23 | 21, 22 | syl 17 |
. . . . 5
⊢ (𝜑 → ((2s
·s 𝐴)
+s 1s ) = ({(((2s ·s 𝐴) +s 1s )
-s 1s )} |s ∅)) |
| 24 | | 2sno 28358 |
. . . . . . . . . 10
⊢
2s ∈ No |
| 25 | 24 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 2s ∈ No ) |
| 26 | 25, 2 | mulscld 28116 |
. . . . . . . 8
⊢ (𝜑 → (2s
·s 𝐴)
∈ No ) |
| 27 | | pncans 28057 |
. . . . . . . 8
⊢
(((2s ·s 𝐴) ∈ No
∧ 1s ∈ No ) →
(((2s ·s 𝐴) +s 1s )
-s 1s ) = (2s ·s 𝐴)) |
| 28 | 26, 4, 27 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (((2s
·s 𝐴)
+s 1s ) -s 1s ) = (2s
·s 𝐴)) |
| 29 | 28 | sneqd 4620 |
. . . . . 6
⊢ (𝜑 → {(((2s
·s 𝐴)
+s 1s ) -s 1s )} = {(2s
·s 𝐴)}) |
| 30 | 29 | oveq1d 7429 |
. . . . 5
⊢ (𝜑 → ({(((2s
·s 𝐴)
+s 1s ) -s 1s )} |s ∅) =
({(2s ·s 𝐴)} |s ∅)) |
| 31 | 23, 30 | eqtrd 2769 |
. . . 4
⊢ (𝜑 → ((2s
·s 𝐴)
+s 1s ) = ({(2s ·s 𝐴)} |s ∅)) |
| 32 | | snelpwi 5430 |
. . . . . 6
⊢
((2s ·s 𝐴) ∈ No
→ {(2s ·s 𝐴)} ∈ 𝒫
No ) |
| 33 | | nulssgt 27798 |
. . . . . 6
⊢
({(2s ·s 𝐴)} ∈ 𝒫
No → {(2s ·s 𝐴)} <<s ∅) |
| 34 | 26, 32, 33 | 3syl 18 |
. . . . 5
⊢ (𝜑 → {(2s
·s 𝐴)}
<<s ∅) |
| 35 | | slerflex 27763 |
. . . . . . 7
⊢
((2s ·s 𝐴) ∈ No
→ (2s ·s 𝐴) ≤s (2s ·s
𝐴)) |
| 36 | 26, 35 | syl 17 |
. . . . . 6
⊢ (𝜑 → (2s
·s 𝐴)
≤s (2s ·s 𝐴)) |
| 37 | | ovex 7447 |
. . . . . . . . 9
⊢
(2s ·s 𝐴) ∈ V |
| 38 | | breq2 5129 |
. . . . . . . . 9
⊢ (𝑦 = (2s
·s 𝐴)
→ (𝑥 ≤s 𝑦 ↔ 𝑥 ≤s (2s ·s
𝐴))) |
| 39 | 37, 38 | rexsn 4664 |
. . . . . . . 8
⊢
(∃𝑦 ∈
{(2s ·s 𝐴)}𝑥 ≤s 𝑦 ↔ 𝑥 ≤s (2s ·s
𝐴)) |
| 40 | 39 | ralbii 3081 |
. . . . . . 7
⊢
(∀𝑥 ∈
{(2s ·s 𝐴)}∃𝑦 ∈ {(2s ·s
𝐴)}𝑥 ≤s 𝑦 ↔ ∀𝑥 ∈ {(2s ·s
𝐴)}𝑥 ≤s (2s ·s
𝐴)) |
| 41 | | breq1 5128 |
. . . . . . . 8
⊢ (𝑥 = (2s
·s 𝐴)
→ (𝑥 ≤s
(2s ·s 𝐴) ↔ (2s ·s
𝐴) ≤s (2s
·s 𝐴))) |
| 42 | 37, 41 | ralsn 4663 |
. . . . . . 7
⊢
(∀𝑥 ∈
{(2s ·s 𝐴)}𝑥 ≤s (2s ·s
𝐴) ↔ (2s
·s 𝐴)
≤s (2s ·s 𝐴)) |
| 43 | 40, 42 | bitri 275 |
. . . . . 6
⊢
(∀𝑥 ∈
{(2s ·s 𝐴)}∃𝑦 ∈ {(2s ·s
𝐴)}𝑥 ≤s 𝑦 ↔ (2s ·s
𝐴) ≤s (2s
·s 𝐴)) |
| 44 | 36, 43 | sylibr 234 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ {(2s ·s
𝐴)}∃𝑦 ∈ {(2s
·s 𝐴)}𝑥 ≤s 𝑦) |
| 45 | | ral0 4495 |
. . . . . 6
⊢
∀𝑥 ∈
∅ ∃𝑦 ∈
{(2s ·s (𝐴 +s 1s ))}𝑦 ≤s 𝑥 |
| 46 | 45 | a1i 11 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ∅ ∃𝑦 ∈ {(2s ·s
(𝐴 +s
1s ))}𝑦 ≤s
𝑥) |
| 47 | 26, 4 | addscld 27968 |
. . . . . . 7
⊢ (𝜑 → ((2s
·s 𝐴)
+s 1s ) ∈ No
) |
| 48 | 26 | sltp1d 28003 |
. . . . . . 7
⊢ (𝜑 → (2s
·s 𝐴)
<s ((2s ·s 𝐴) +s 1s
)) |
| 49 | 26, 47, 48 | ssltsn 27792 |
. . . . . 6
⊢ (𝜑 → {(2s
·s 𝐴)}
<<s {((2s ·s 𝐴) +s 1s
)}) |
| 50 | 31 | sneqd 4620 |
. . . . . 6
⊢ (𝜑 → {((2s
·s 𝐴)
+s 1s )} = {({(2s ·s 𝐴)} |s
∅)}) |
| 51 | 49, 50 | breqtrd 5151 |
. . . . 5
⊢ (𝜑 → {(2s
·s 𝐴)}
<<s {({(2s ·s 𝐴)} |s ∅)}) |
| 52 | 25, 5 | mulscld 28116 |
. . . . . . 7
⊢ (𝜑 → (2s
·s (𝐴
+s 1s )) ∈ No
) |
| 53 | 4 | sltp1d 28003 |
. . . . . . . . . 10
⊢ (𝜑 → 1s <s (
1s +s 1s )) |
| 54 | | 1p1e2s 28355 |
. . . . . . . . . 10
⊢ (
1s +s 1s ) = 2s |
| 55 | 53, 54 | breqtrdi 5166 |
. . . . . . . . 9
⊢ (𝜑 → 1s <s
2s) |
| 56 | 4, 25, 26 | sltadd2d 27985 |
. . . . . . . . 9
⊢ (𝜑 → ( 1s <s
2s ↔ ((2s ·s 𝐴) +s 1s ) <s
((2s ·s 𝐴) +s
2s))) |
| 57 | 55, 56 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → ((2s
·s 𝐴)
+s 1s ) <s ((2s ·s 𝐴) +s
2s)) |
| 58 | 25, 2, 4 | addsdid 28137 |
. . . . . . . . 9
⊢ (𝜑 → (2s
·s (𝐴
+s 1s )) = ((2s ·s 𝐴) +s (2s
·s 1s ))) |
| 59 | | mulsrid 28094 |
. . . . . . . . . . 11
⊢
(2s ∈ No →
(2s ·s 1s ) =
2s) |
| 60 | 24, 59 | ax-mp 5 |
. . . . . . . . . 10
⊢
(2s ·s 1s ) =
2s |
| 61 | 60 | oveq2i 7425 |
. . . . . . . . 9
⊢
((2s ·s 𝐴) +s (2s
·s 1s )) = ((2s ·s
𝐴) +s
2s) |
| 62 | 58, 61 | eqtrdi 2785 |
. . . . . . . 8
⊢ (𝜑 → (2s
·s (𝐴
+s 1s )) = ((2s ·s 𝐴) +s
2s)) |
| 63 | 57, 62 | breqtrrd 5153 |
. . . . . . 7
⊢ (𝜑 → ((2s
·s 𝐴)
+s 1s ) <s (2s ·s (𝐴 +s 1s
))) |
| 64 | 47, 52, 63 | ssltsn 27792 |
. . . . . 6
⊢ (𝜑 → {((2s
·s 𝐴)
+s 1s )} <<s {(2s ·s
(𝐴 +s
1s ))}) |
| 65 | 50, 64 | eqbrtrrd 5149 |
. . . . 5
⊢ (𝜑 → {({(2s
·s 𝐴)} |s
∅)} <<s {(2s ·s (𝐴 +s 1s
))}) |
| 66 | 34, 44, 46, 51, 65 | cofcut1d 27910 |
. . . 4
⊢ (𝜑 → ({(2s
·s 𝐴)} |s
∅) = ({(2s ·s 𝐴)} |s {(2s ·s
(𝐴 +s
1s ))})) |
| 67 | 11, 31, 66 | 3eqtrrd 2774 |
. . 3
⊢ (𝜑 → ({(2s
·s 𝐴)} |s
{(2s ·s (𝐴 +s 1s ))}) = (𝐴 +s (𝐴 +s 1s
))) |
| 68 | | eqid 2734 |
. . 3
⊢ ({𝐴} |s {(𝐴 +s 1s )}) = ({𝐴} |s {(𝐴 +s 1s
)}) |
| 69 | 2, 5, 6, 67, 68 | halfcut 28371 |
. 2
⊢ (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = ((𝐴 +s (𝐴 +s 1s ))
/su 2s)) |
| 70 | 11 | oveq1d 7429 |
. 2
⊢ (𝜑 → ((𝐴 +s (𝐴 +s 1s ))
/su 2s) = (((2s ·s 𝐴) +s 1s )
/su 2s)) |
| 71 | | 2ne0s 28359 |
. . . . 5
⊢
2s ≠ 0s |
| 72 | 71 | a1i 11 |
. . . 4
⊢ (𝜑 → 2s ≠
0s ) |
| 73 | 26, 4, 25, 72 | divsdird 28214 |
. . 3
⊢ (𝜑 → (((2s
·s 𝐴)
+s 1s ) /su 2s) =
(((2s ·s 𝐴) /su 2s)
+s ( 1s /su
2s))) |
| 74 | 2, 25, 72 | divscan3d 28215 |
. . . 4
⊢ (𝜑 → ((2s
·s 𝐴)
/su 2s) = 𝐴) |
| 75 | 74 | oveq1d 7429 |
. . 3
⊢ (𝜑 → (((2s
·s 𝐴)
/su 2s) +s ( 1s
/su 2s)) = (𝐴 +s ( 1s
/su 2s))) |
| 76 | 73, 75 | eqtrd 2769 |
. 2
⊢ (𝜑 → (((2s
·s 𝐴)
+s 1s ) /su 2s) = (𝐴 +s ( 1s
/su 2s))) |
| 77 | 69, 70, 76 | 3eqtrd 2773 |
1
⊢ (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = (𝐴 +s ( 1s
/su 2s))) |