MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addhalfcut Structured version   Visualization version   GIF version

Theorem addhalfcut 28385
Description: The cut of a surreal non-negative integer and its successor is the original number plus one half. Part of theorem 4.2 of [Gonshor] p. 30. (Contributed by Scott Fenton, 13-Aug-2025.)
Hypothesis
Ref Expression
addhalfcut.1 (𝜑𝐴 ∈ ℕ0s)
Assertion
Ref Expression
addhalfcut (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = (𝐴 +s ( 1s /su 2s)))

Proof of Theorem addhalfcut
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addhalfcut.1 . . . 4 (𝜑𝐴 ∈ ℕ0s)
21n0snod 28260 . . 3 (𝜑𝐴 No )
3 1sno 27777 . . . . 5 1s No
43a1i 11 . . . 4 (𝜑 → 1s No )
52, 4addscld 27929 . . 3 (𝜑 → (𝐴 +s 1s ) ∈ No )
62sltp1d 27964 . . 3 (𝜑𝐴 <s (𝐴 +s 1s ))
7 no2times 28346 . . . . . . 7 (𝐴 No → (2s ·s 𝐴) = (𝐴 +s 𝐴))
82, 7syl 17 . . . . . 6 (𝜑 → (2s ·s 𝐴) = (𝐴 +s 𝐴))
98oveq1d 7367 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ((𝐴 +s 𝐴) +s 1s ))
102, 2, 4addsassd 27955 . . . . 5 (𝜑 → ((𝐴 +s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s )))
119, 10eqtr2d 2767 . . . 4 (𝜑 → (𝐴 +s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s 1s ))
12 2nns 28347 . . . . . . . . . 10 2s ∈ ℕs
13 nnn0s 28262 . . . . . . . . . 10 (2s ∈ ℕs → 2s ∈ ℕ0s)
1412, 13ax-mp 5 . . . . . . . . 9 2s ∈ ℕ0s
1514a1i 11 . . . . . . . 8 (𝜑 → 2s ∈ ℕ0s)
16 n0mulscl 28279 . . . . . . . 8 ((2s ∈ ℕ0s𝐴 ∈ ℕ0s) → (2s ·s 𝐴) ∈ ℕ0s)
1715, 1, 16syl2anc 584 . . . . . . 7 (𝜑 → (2s ·s 𝐴) ∈ ℕ0s)
18 1n0s 28282 . . . . . . . 8 1s ∈ ℕ0s
1918a1i 11 . . . . . . 7 (𝜑 → 1s ∈ ℕ0s)
20 n0addscl 28278 . . . . . . 7 (((2s ·s 𝐴) ∈ ℕ0s ∧ 1s ∈ ℕ0s) → ((2s ·s 𝐴) +s 1s ) ∈ ℕ0s)
2117, 19, 20syl2anc 584 . . . . . 6 (𝜑 → ((2s ·s 𝐴) +s 1s ) ∈ ℕ0s)
22 n0scut 28268 . . . . . 6 (((2s ·s 𝐴) +s 1s ) ∈ ℕ0s → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s ∅))
2321, 22syl 17 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s ∅))
24 2sno 28348 . . . . . . . . . 10 2s No
2524a1i 11 . . . . . . . . 9 (𝜑 → 2s No )
2625, 2mulscld 28080 . . . . . . . 8 (𝜑 → (2s ·s 𝐴) ∈ No )
27 pncans 28018 . . . . . . . 8 (((2s ·s 𝐴) ∈ No ∧ 1s No ) → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2826, 4, 27syl2anc 584 . . . . . . 7 (𝜑 → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2928sneqd 4587 . . . . . 6 (𝜑 → {(((2s ·s 𝐴) +s 1s ) -s 1s )} = {(2s ·s 𝐴)})
3029oveq1d 7367 . . . . 5 (𝜑 → ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s ∅) = ({(2s ·s 𝐴)} |s ∅))
3123, 30eqtrd 2766 . . . 4 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ({(2s ·s 𝐴)} |s ∅))
32 snelpwi 5387 . . . . . 6 ((2s ·s 𝐴) ∈ No → {(2s ·s 𝐴)} ∈ 𝒫 No )
33 nulssgt 27745 . . . . . 6 ({(2s ·s 𝐴)} ∈ 𝒫 No → {(2s ·s 𝐴)} <<s ∅)
3426, 32, 333syl 18 . . . . 5 (𝜑 → {(2s ·s 𝐴)} <<s ∅)
35 slerflex 27708 . . . . . . 7 ((2s ·s 𝐴) ∈ No → (2s ·s 𝐴) ≤s (2s ·s 𝐴))
3626, 35syl 17 . . . . . 6 (𝜑 → (2s ·s 𝐴) ≤s (2s ·s 𝐴))
37 ovex 7385 . . . . . . . . 9 (2s ·s 𝐴) ∈ V
38 breq2 5097 . . . . . . . . 9 (𝑦 = (2s ·s 𝐴) → (𝑥 ≤s 𝑦𝑥 ≤s (2s ·s 𝐴)))
3937, 38rexsn 4634 . . . . . . . 8 (∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦𝑥 ≤s (2s ·s 𝐴))
4039ralbii 3078 . . . . . . 7 (∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦 ↔ ∀𝑥 ∈ {(2s ·s 𝐴)}𝑥 ≤s (2s ·s 𝐴))
41 breq1 5096 . . . . . . . 8 (𝑥 = (2s ·s 𝐴) → (𝑥 ≤s (2s ·s 𝐴) ↔ (2s ·s 𝐴) ≤s (2s ·s 𝐴)))
4237, 41ralsn 4633 . . . . . . 7 (∀𝑥 ∈ {(2s ·s 𝐴)}𝑥 ≤s (2s ·s 𝐴) ↔ (2s ·s 𝐴) ≤s (2s ·s 𝐴))
4340, 42bitri 275 . . . . . 6 (∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦 ↔ (2s ·s 𝐴) ≤s (2s ·s 𝐴))
4436, 43sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦)
45 ral0 4462 . . . . . 6 𝑥 ∈ ∅ ∃𝑦 ∈ {(2s ·s (𝐴 +s 1s ))}𝑦 ≤s 𝑥
4645a1i 11 . . . . 5 (𝜑 → ∀𝑥 ∈ ∅ ∃𝑦 ∈ {(2s ·s (𝐴 +s 1s ))}𝑦 ≤s 𝑥)
4726, 4addscld 27929 . . . . . . 7 (𝜑 → ((2s ·s 𝐴) +s 1s ) ∈ No )
4826sltp1d 27964 . . . . . . 7 (𝜑 → (2s ·s 𝐴) <s ((2s ·s 𝐴) +s 1s ))
4926, 47, 48ssltsn 27739 . . . . . 6 (𝜑 → {(2s ·s 𝐴)} <<s {((2s ·s 𝐴) +s 1s )})
5031sneqd 4587 . . . . . 6 (𝜑 → {((2s ·s 𝐴) +s 1s )} = {({(2s ·s 𝐴)} |s ∅)})
5149, 50breqtrd 5119 . . . . 5 (𝜑 → {(2s ·s 𝐴)} <<s {({(2s ·s 𝐴)} |s ∅)})
5225, 5mulscld 28080 . . . . . . 7 (𝜑 → (2s ·s (𝐴 +s 1s )) ∈ No )
534sltp1d 27964 . . . . . . . . . 10 (𝜑 → 1s <s ( 1s +s 1s ))
54 1p1e2s 28345 . . . . . . . . . 10 ( 1s +s 1s ) = 2s
5553, 54breqtrdi 5134 . . . . . . . . 9 (𝜑 → 1s <s 2s)
564, 25, 26sltadd2d 27946 . . . . . . . . 9 (𝜑 → ( 1s <s 2s ↔ ((2s ·s 𝐴) +s 1s ) <s ((2s ·s 𝐴) +s 2s)))
5755, 56mpbid 232 . . . . . . . 8 (𝜑 → ((2s ·s 𝐴) +s 1s ) <s ((2s ·s 𝐴) +s 2s))
5825, 2, 4addsdid 28101 . . . . . . . . 9 (𝜑 → (2s ·s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s (2s ·s 1s )))
59 mulsrid 28058 . . . . . . . . . . 11 (2s No → (2s ·s 1s ) = 2s)
6024, 59ax-mp 5 . . . . . . . . . 10 (2s ·s 1s ) = 2s
6160oveq2i 7363 . . . . . . . . 9 ((2s ·s 𝐴) +s (2s ·s 1s )) = ((2s ·s 𝐴) +s 2s)
6258, 61eqtrdi 2782 . . . . . . . 8 (𝜑 → (2s ·s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s 2s))
6357, 62breqtrrd 5121 . . . . . . 7 (𝜑 → ((2s ·s 𝐴) +s 1s ) <s (2s ·s (𝐴 +s 1s )))
6447, 52, 63ssltsn 27739 . . . . . 6 (𝜑 → {((2s ·s 𝐴) +s 1s )} <<s {(2s ·s (𝐴 +s 1s ))})
6550, 64eqbrtrrd 5117 . . . . 5 (𝜑 → {({(2s ·s 𝐴)} |s ∅)} <<s {(2s ·s (𝐴 +s 1s ))})
6634, 44, 46, 51, 65cofcut1d 27871 . . . 4 (𝜑 → ({(2s ·s 𝐴)} |s ∅) = ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}))
6711, 31, 663eqtrrd 2771 . . 3 (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}) = (𝐴 +s (𝐴 +s 1s )))
68 eqid 2731 . . 3 ({𝐴} |s {(𝐴 +s 1s )}) = ({𝐴} |s {(𝐴 +s 1s )})
692, 5, 6, 67, 68halfcut 28384 . 2 (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = ((𝐴 +s (𝐴 +s 1s )) /su 2s))
7011oveq1d 7367 . 2 (𝜑 → ((𝐴 +s (𝐴 +s 1s )) /su 2s) = (((2s ·s 𝐴) +s 1s ) /su 2s))
71 2ne0s 28349 . . . . 5 2s ≠ 0s
7271a1i 11 . . . 4 (𝜑 → 2s ≠ 0s )
7326, 4, 25, 72divsdird 28179 . . 3 (𝜑 → (((2s ·s 𝐴) +s 1s ) /su 2s) = (((2s ·s 𝐴) /su 2s) +s ( 1s /su 2s)))
742, 25, 72divscan3d 28180 . . . 4 (𝜑 → ((2s ·s 𝐴) /su 2s) = 𝐴)
7574oveq1d 7367 . . 3 (𝜑 → (((2s ·s 𝐴) /su 2s) +s ( 1s /su 2s)) = (𝐴 +s ( 1s /su 2s)))
7673, 75eqtrd 2766 . 2 (𝜑 → (((2s ·s 𝐴) +s 1s ) /su 2s) = (𝐴 +s ( 1s /su 2s)))
7769, 70, 763eqtrd 2770 1 (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = (𝐴 +s ( 1s /su 2s)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  c0 4282  𝒫 cpw 4549  {csn 4575   class class class wbr 5093  (class class class)co 7352   No csur 27584   <s cslt 27585   ≤s csle 27689   <<s csslt 27726   |s cscut 27728   0s c0s 27772   1s c1s 27773   +s cadds 27908   -s csubs 27968   ·s cmuls 28051   /su cdivs 28132  0scnn0s 28248  scnns 28249  2sc2s 28339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-dc 10343
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-nadd 8587  df-no 27587  df-slt 27588  df-bday 27589  df-sle 27690  df-sslt 27727  df-scut 27729  df-0s 27774  df-1s 27775  df-made 27794  df-old 27795  df-left 27797  df-right 27798  df-norec 27887  df-norec2 27898  df-adds 27909  df-negs 27969  df-subs 27970  df-muls 28052  df-divs 28133  df-n0s 28250  df-nns 28251  df-2s 28340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator