MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addhalfcut Structured version   Visualization version   GIF version

Theorem addhalfcut 28365
Description: The cut of a surreal non-negative integer and its successor is the original number plus one half. Part of theorem 4.2 of [Gonshor] p. 30. (Contributed by Scott Fenton, 13-Aug-2025.)
Hypothesis
Ref Expression
addhalfcut.1 (𝜑𝐴 ∈ ℕ0s)
Assertion
Ref Expression
addhalfcut (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = (𝐴 +s ( 1s /su 2s)))

Proof of Theorem addhalfcut
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addhalfcut.1 . . . 4 (𝜑𝐴 ∈ ℕ0s)
21n0snod 28241 . . 3 (𝜑𝐴 No )
3 1sno 27759 . . . . 5 1s No
43a1i 11 . . . 4 (𝜑 → 1s No )
52, 4addscld 27910 . . 3 (𝜑 → (𝐴 +s 1s ) ∈ No )
62sltp1d 27945 . . 3 (𝜑𝐴 <s (𝐴 +s 1s ))
7 no2times 28327 . . . . . . 7 (𝐴 No → (2s ·s 𝐴) = (𝐴 +s 𝐴))
82, 7syl 17 . . . . . 6 (𝜑 → (2s ·s 𝐴) = (𝐴 +s 𝐴))
98oveq1d 7368 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ((𝐴 +s 𝐴) +s 1s ))
102, 2, 4addsassd 27936 . . . . 5 (𝜑 → ((𝐴 +s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s )))
119, 10eqtr2d 2765 . . . 4 (𝜑 → (𝐴 +s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s 1s ))
12 2nns 28328 . . . . . . . . . 10 2s ∈ ℕs
13 nnn0s 28243 . . . . . . . . . 10 (2s ∈ ℕs → 2s ∈ ℕ0s)
1412, 13ax-mp 5 . . . . . . . . 9 2s ∈ ℕ0s
1514a1i 11 . . . . . . . 8 (𝜑 → 2s ∈ ℕ0s)
16 n0mulscl 28260 . . . . . . . 8 ((2s ∈ ℕ0s𝐴 ∈ ℕ0s) → (2s ·s 𝐴) ∈ ℕ0s)
1715, 1, 16syl2anc 584 . . . . . . 7 (𝜑 → (2s ·s 𝐴) ∈ ℕ0s)
18 1n0s 28263 . . . . . . . 8 1s ∈ ℕ0s
1918a1i 11 . . . . . . 7 (𝜑 → 1s ∈ ℕ0s)
20 n0addscl 28259 . . . . . . 7 (((2s ·s 𝐴) ∈ ℕ0s ∧ 1s ∈ ℕ0s) → ((2s ·s 𝐴) +s 1s ) ∈ ℕ0s)
2117, 19, 20syl2anc 584 . . . . . 6 (𝜑 → ((2s ·s 𝐴) +s 1s ) ∈ ℕ0s)
22 n0scut 28249 . . . . . 6 (((2s ·s 𝐴) +s 1s ) ∈ ℕ0s → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s ∅))
2321, 22syl 17 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s ∅))
24 2sno 28329 . . . . . . . . . 10 2s No
2524a1i 11 . . . . . . . . 9 (𝜑 → 2s No )
2625, 2mulscld 28061 . . . . . . . 8 (𝜑 → (2s ·s 𝐴) ∈ No )
27 pncans 27999 . . . . . . . 8 (((2s ·s 𝐴) ∈ No ∧ 1s No ) → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2826, 4, 27syl2anc 584 . . . . . . 7 (𝜑 → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2928sneqd 4591 . . . . . 6 (𝜑 → {(((2s ·s 𝐴) +s 1s ) -s 1s )} = {(2s ·s 𝐴)})
3029oveq1d 7368 . . . . 5 (𝜑 → ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s ∅) = ({(2s ·s 𝐴)} |s ∅))
3123, 30eqtrd 2764 . . . 4 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ({(2s ·s 𝐴)} |s ∅))
32 snelpwi 5390 . . . . . 6 ((2s ·s 𝐴) ∈ No → {(2s ·s 𝐴)} ∈ 𝒫 No )
33 nulssgt 27727 . . . . . 6 ({(2s ·s 𝐴)} ∈ 𝒫 No → {(2s ·s 𝐴)} <<s ∅)
3426, 32, 333syl 18 . . . . 5 (𝜑 → {(2s ·s 𝐴)} <<s ∅)
35 slerflex 27691 . . . . . . 7 ((2s ·s 𝐴) ∈ No → (2s ·s 𝐴) ≤s (2s ·s 𝐴))
3626, 35syl 17 . . . . . 6 (𝜑 → (2s ·s 𝐴) ≤s (2s ·s 𝐴))
37 ovex 7386 . . . . . . . . 9 (2s ·s 𝐴) ∈ V
38 breq2 5099 . . . . . . . . 9 (𝑦 = (2s ·s 𝐴) → (𝑥 ≤s 𝑦𝑥 ≤s (2s ·s 𝐴)))
3937, 38rexsn 4636 . . . . . . . 8 (∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦𝑥 ≤s (2s ·s 𝐴))
4039ralbii 3075 . . . . . . 7 (∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦 ↔ ∀𝑥 ∈ {(2s ·s 𝐴)}𝑥 ≤s (2s ·s 𝐴))
41 breq1 5098 . . . . . . . 8 (𝑥 = (2s ·s 𝐴) → (𝑥 ≤s (2s ·s 𝐴) ↔ (2s ·s 𝐴) ≤s (2s ·s 𝐴)))
4237, 41ralsn 4635 . . . . . . 7 (∀𝑥 ∈ {(2s ·s 𝐴)}𝑥 ≤s (2s ·s 𝐴) ↔ (2s ·s 𝐴) ≤s (2s ·s 𝐴))
4340, 42bitri 275 . . . . . 6 (∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦 ↔ (2s ·s 𝐴) ≤s (2s ·s 𝐴))
4436, 43sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦)
45 ral0 4466 . . . . . 6 𝑥 ∈ ∅ ∃𝑦 ∈ {(2s ·s (𝐴 +s 1s ))}𝑦 ≤s 𝑥
4645a1i 11 . . . . 5 (𝜑 → ∀𝑥 ∈ ∅ ∃𝑦 ∈ {(2s ·s (𝐴 +s 1s ))}𝑦 ≤s 𝑥)
4726, 4addscld 27910 . . . . . . 7 (𝜑 → ((2s ·s 𝐴) +s 1s ) ∈ No )
4826sltp1d 27945 . . . . . . 7 (𝜑 → (2s ·s 𝐴) <s ((2s ·s 𝐴) +s 1s ))
4926, 47, 48ssltsn 27721 . . . . . 6 (𝜑 → {(2s ·s 𝐴)} <<s {((2s ·s 𝐴) +s 1s )})
5031sneqd 4591 . . . . . 6 (𝜑 → {((2s ·s 𝐴) +s 1s )} = {({(2s ·s 𝐴)} |s ∅)})
5149, 50breqtrd 5121 . . . . 5 (𝜑 → {(2s ·s 𝐴)} <<s {({(2s ·s 𝐴)} |s ∅)})
5225, 5mulscld 28061 . . . . . . 7 (𝜑 → (2s ·s (𝐴 +s 1s )) ∈ No )
534sltp1d 27945 . . . . . . . . . 10 (𝜑 → 1s <s ( 1s +s 1s ))
54 1p1e2s 28326 . . . . . . . . . 10 ( 1s +s 1s ) = 2s
5553, 54breqtrdi 5136 . . . . . . . . 9 (𝜑 → 1s <s 2s)
564, 25, 26sltadd2d 27927 . . . . . . . . 9 (𝜑 → ( 1s <s 2s ↔ ((2s ·s 𝐴) +s 1s ) <s ((2s ·s 𝐴) +s 2s)))
5755, 56mpbid 232 . . . . . . . 8 (𝜑 → ((2s ·s 𝐴) +s 1s ) <s ((2s ·s 𝐴) +s 2s))
5825, 2, 4addsdid 28082 . . . . . . . . 9 (𝜑 → (2s ·s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s (2s ·s 1s )))
59 mulsrid 28039 . . . . . . . . . . 11 (2s No → (2s ·s 1s ) = 2s)
6024, 59ax-mp 5 . . . . . . . . . 10 (2s ·s 1s ) = 2s
6160oveq2i 7364 . . . . . . . . 9 ((2s ·s 𝐴) +s (2s ·s 1s )) = ((2s ·s 𝐴) +s 2s)
6258, 61eqtrdi 2780 . . . . . . . 8 (𝜑 → (2s ·s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s 2s))
6357, 62breqtrrd 5123 . . . . . . 7 (𝜑 → ((2s ·s 𝐴) +s 1s ) <s (2s ·s (𝐴 +s 1s )))
6447, 52, 63ssltsn 27721 . . . . . 6 (𝜑 → {((2s ·s 𝐴) +s 1s )} <<s {(2s ·s (𝐴 +s 1s ))})
6550, 64eqbrtrrd 5119 . . . . 5 (𝜑 → {({(2s ·s 𝐴)} |s ∅)} <<s {(2s ·s (𝐴 +s 1s ))})
6634, 44, 46, 51, 65cofcut1d 27852 . . . 4 (𝜑 → ({(2s ·s 𝐴)} |s ∅) = ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}))
6711, 31, 663eqtrrd 2769 . . 3 (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}) = (𝐴 +s (𝐴 +s 1s )))
68 eqid 2729 . . 3 ({𝐴} |s {(𝐴 +s 1s )}) = ({𝐴} |s {(𝐴 +s 1s )})
692, 5, 6, 67, 68halfcut 28364 . 2 (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = ((𝐴 +s (𝐴 +s 1s )) /su 2s))
7011oveq1d 7368 . 2 (𝜑 → ((𝐴 +s (𝐴 +s 1s )) /su 2s) = (((2s ·s 𝐴) +s 1s ) /su 2s))
71 2ne0s 28330 . . . . 5 2s ≠ 0s
7271a1i 11 . . . 4 (𝜑 → 2s ≠ 0s )
7326, 4, 25, 72divsdird 28160 . . 3 (𝜑 → (((2s ·s 𝐴) +s 1s ) /su 2s) = (((2s ·s 𝐴) /su 2s) +s ( 1s /su 2s)))
742, 25, 72divscan3d 28161 . . . 4 (𝜑 → ((2s ·s 𝐴) /su 2s) = 𝐴)
7574oveq1d 7368 . . 3 (𝜑 → (((2s ·s 𝐴) /su 2s) +s ( 1s /su 2s)) = (𝐴 +s ( 1s /su 2s)))
7673, 75eqtrd 2764 . 2 (𝜑 → (((2s ·s 𝐴) +s 1s ) /su 2s) = (𝐴 +s ( 1s /su 2s)))
7769, 70, 763eqtrd 2768 1 (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = (𝐴 +s ( 1s /su 2s)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  c0 4286  𝒫 cpw 4553  {csn 4579   class class class wbr 5095  (class class class)co 7353   No csur 27567   <s cslt 27568   ≤s csle 27672   <<s csslt 27709   |s cscut 27711   0s c0s 27754   1s c1s 27755   +s cadds 27889   -s csubs 27949   ·s cmuls 28032   /su cdivs 28113  0scnn0s 28229  scnns 28230  2sc2s 28320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-dc 10359
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sle 27673  df-sslt 27710  df-scut 27712  df-0s 27756  df-1s 27757  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec 27868  df-norec2 27879  df-adds 27890  df-negs 27950  df-subs 27951  df-muls 28033  df-divs 28114  df-n0s 28231  df-nns 28232  df-2s 28321
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator