MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addhalfcut Structured version   Visualization version   GIF version

Theorem addhalfcut 28434
Description: The cut of a surreal non-negative integer and its successor is the original number plus one half. Part of theorem 4.2 of [Gonshor] p. 30. (Contributed by Scott Fenton, 13-Aug-2025.)
Hypothesis
Ref Expression
addhalfcut.1 (𝜑𝐴 ∈ ℕ0s)
Assertion
Ref Expression
addhalfcut (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = (𝐴 +s ( 1s /su 2s)))

Proof of Theorem addhalfcut
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addhalfcut.1 . . . 4 (𝜑𝐴 ∈ ℕ0s)
21n0snod 28345 . . 3 (𝜑𝐴 No )
3 1sno 27887 . . . . 5 1s No
43a1i 11 . . . 4 (𝜑 → 1s No )
52, 4addscld 28028 . . 3 (𝜑 → (𝐴 +s 1s ) ∈ No )
62sltp1d 28063 . . 3 (𝜑𝐴 <s (𝐴 +s 1s ))
7 no2times 28416 . . . . . . 7 (𝐴 No → (2s ·s 𝐴) = (𝐴 +s 𝐴))
82, 7syl 17 . . . . . 6 (𝜑 → (2s ·s 𝐴) = (𝐴 +s 𝐴))
98oveq1d 7446 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ((𝐴 +s 𝐴) +s 1s ))
102, 2, 4addsassd 28054 . . . . 5 (𝜑 → ((𝐴 +s 𝐴) +s 1s ) = (𝐴 +s (𝐴 +s 1s )))
119, 10eqtr2d 2776 . . . 4 (𝜑 → (𝐴 +s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s 1s ))
12 2nns 28417 . . . . . . . . . 10 2s ∈ ℕs
13 nnn0s 28347 . . . . . . . . . 10 (2s ∈ ℕs → 2s ∈ ℕ0s)
1412, 13ax-mp 5 . . . . . . . . 9 2s ∈ ℕ0s
1514a1i 11 . . . . . . . 8 (𝜑 → 2s ∈ ℕ0s)
16 n0mulscl 28363 . . . . . . . 8 ((2s ∈ ℕ0s𝐴 ∈ ℕ0s) → (2s ·s 𝐴) ∈ ℕ0s)
1715, 1, 16syl2anc 584 . . . . . . 7 (𝜑 → (2s ·s 𝐴) ∈ ℕ0s)
18 1n0s 28366 . . . . . . . 8 1s ∈ ℕ0s
1918a1i 11 . . . . . . 7 (𝜑 → 1s ∈ ℕ0s)
20 n0addscl 28362 . . . . . . 7 (((2s ·s 𝐴) ∈ ℕ0s ∧ 1s ∈ ℕ0s) → ((2s ·s 𝐴) +s 1s ) ∈ ℕ0s)
2117, 19, 20syl2anc 584 . . . . . 6 (𝜑 → ((2s ·s 𝐴) +s 1s ) ∈ ℕ0s)
22 n0scut 28353 . . . . . 6 (((2s ·s 𝐴) +s 1s ) ∈ ℕ0s → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s ∅))
2321, 22syl 17 . . . . 5 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s ∅))
24 2sno 28418 . . . . . . . . . 10 2s No
2524a1i 11 . . . . . . . . 9 (𝜑 → 2s No )
2625, 2mulscld 28176 . . . . . . . 8 (𝜑 → (2s ·s 𝐴) ∈ No )
27 pncans 28117 . . . . . . . 8 (((2s ·s 𝐴) ∈ No ∧ 1s No ) → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2826, 4, 27syl2anc 584 . . . . . . 7 (𝜑 → (((2s ·s 𝐴) +s 1s ) -s 1s ) = (2s ·s 𝐴))
2928sneqd 4643 . . . . . 6 (𝜑 → {(((2s ·s 𝐴) +s 1s ) -s 1s )} = {(2s ·s 𝐴)})
3029oveq1d 7446 . . . . 5 (𝜑 → ({(((2s ·s 𝐴) +s 1s ) -s 1s )} |s ∅) = ({(2s ·s 𝐴)} |s ∅))
3123, 30eqtrd 2775 . . . 4 (𝜑 → ((2s ·s 𝐴) +s 1s ) = ({(2s ·s 𝐴)} |s ∅))
32 snelpwi 5454 . . . . . 6 ((2s ·s 𝐴) ∈ No → {(2s ·s 𝐴)} ∈ 𝒫 No )
33 nulssgt 27858 . . . . . 6 ({(2s ·s 𝐴)} ∈ 𝒫 No → {(2s ·s 𝐴)} <<s ∅)
3426, 32, 333syl 18 . . . . 5 (𝜑 → {(2s ·s 𝐴)} <<s ∅)
35 slerflex 27823 . . . . . . 7 ((2s ·s 𝐴) ∈ No → (2s ·s 𝐴) ≤s (2s ·s 𝐴))
3626, 35syl 17 . . . . . 6 (𝜑 → (2s ·s 𝐴) ≤s (2s ·s 𝐴))
37 ovex 7464 . . . . . . . . 9 (2s ·s 𝐴) ∈ V
38 breq2 5152 . . . . . . . . 9 (𝑦 = (2s ·s 𝐴) → (𝑥 ≤s 𝑦𝑥 ≤s (2s ·s 𝐴)))
3937, 38rexsn 4687 . . . . . . . 8 (∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦𝑥 ≤s (2s ·s 𝐴))
4039ralbii 3091 . . . . . . 7 (∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦 ↔ ∀𝑥 ∈ {(2s ·s 𝐴)}𝑥 ≤s (2s ·s 𝐴))
41 breq1 5151 . . . . . . . 8 (𝑥 = (2s ·s 𝐴) → (𝑥 ≤s (2s ·s 𝐴) ↔ (2s ·s 𝐴) ≤s (2s ·s 𝐴)))
4237, 41ralsn 4686 . . . . . . 7 (∀𝑥 ∈ {(2s ·s 𝐴)}𝑥 ≤s (2s ·s 𝐴) ↔ (2s ·s 𝐴) ≤s (2s ·s 𝐴))
4340, 42bitri 275 . . . . . 6 (∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦 ↔ (2s ·s 𝐴) ≤s (2s ·s 𝐴))
4436, 43sylibr 234 . . . . 5 (𝜑 → ∀𝑥 ∈ {(2s ·s 𝐴)}∃𝑦 ∈ {(2s ·s 𝐴)}𝑥 ≤s 𝑦)
45 ral0 4519 . . . . . 6 𝑥 ∈ ∅ ∃𝑦 ∈ {(2s ·s (𝐴 +s 1s ))}𝑦 ≤s 𝑥
4645a1i 11 . . . . 5 (𝜑 → ∀𝑥 ∈ ∅ ∃𝑦 ∈ {(2s ·s (𝐴 +s 1s ))}𝑦 ≤s 𝑥)
4726, 4addscld 28028 . . . . . . 7 (𝜑 → ((2s ·s 𝐴) +s 1s ) ∈ No )
4826sltp1d 28063 . . . . . . 7 (𝜑 → (2s ·s 𝐴) <s ((2s ·s 𝐴) +s 1s ))
4926, 47, 48ssltsn 27852 . . . . . 6 (𝜑 → {(2s ·s 𝐴)} <<s {((2s ·s 𝐴) +s 1s )})
5031sneqd 4643 . . . . . 6 (𝜑 → {((2s ·s 𝐴) +s 1s )} = {({(2s ·s 𝐴)} |s ∅)})
5149, 50breqtrd 5174 . . . . 5 (𝜑 → {(2s ·s 𝐴)} <<s {({(2s ·s 𝐴)} |s ∅)})
5225, 5mulscld 28176 . . . . . . 7 (𝜑 → (2s ·s (𝐴 +s 1s )) ∈ No )
534sltp1d 28063 . . . . . . . . . 10 (𝜑 → 1s <s ( 1s +s 1s ))
54 1p1e2s 28415 . . . . . . . . . 10 ( 1s +s 1s ) = 2s
5553, 54breqtrdi 5189 . . . . . . . . 9 (𝜑 → 1s <s 2s)
564, 25, 26sltadd2d 28045 . . . . . . . . 9 (𝜑 → ( 1s <s 2s ↔ ((2s ·s 𝐴) +s 1s ) <s ((2s ·s 𝐴) +s 2s)))
5755, 56mpbid 232 . . . . . . . 8 (𝜑 → ((2s ·s 𝐴) +s 1s ) <s ((2s ·s 𝐴) +s 2s))
5825, 2, 4addsdid 28197 . . . . . . . . 9 (𝜑 → (2s ·s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s (2s ·s 1s )))
59 mulsrid 28154 . . . . . . . . . . 11 (2s No → (2s ·s 1s ) = 2s)
6024, 59ax-mp 5 . . . . . . . . . 10 (2s ·s 1s ) = 2s
6160oveq2i 7442 . . . . . . . . 9 ((2s ·s 𝐴) +s (2s ·s 1s )) = ((2s ·s 𝐴) +s 2s)
6258, 61eqtrdi 2791 . . . . . . . 8 (𝜑 → (2s ·s (𝐴 +s 1s )) = ((2s ·s 𝐴) +s 2s))
6357, 62breqtrrd 5176 . . . . . . 7 (𝜑 → ((2s ·s 𝐴) +s 1s ) <s (2s ·s (𝐴 +s 1s )))
6447, 52, 63ssltsn 27852 . . . . . 6 (𝜑 → {((2s ·s 𝐴) +s 1s )} <<s {(2s ·s (𝐴 +s 1s ))})
6550, 64eqbrtrrd 5172 . . . . 5 (𝜑 → {({(2s ·s 𝐴)} |s ∅)} <<s {(2s ·s (𝐴 +s 1s ))})
6634, 44, 46, 51, 65cofcut1d 27970 . . . 4 (𝜑 → ({(2s ·s 𝐴)} |s ∅) = ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}))
6711, 31, 663eqtrrd 2780 . . 3 (𝜑 → ({(2s ·s 𝐴)} |s {(2s ·s (𝐴 +s 1s ))}) = (𝐴 +s (𝐴 +s 1s )))
68 eqid 2735 . . 3 ({𝐴} |s {(𝐴 +s 1s )}) = ({𝐴} |s {(𝐴 +s 1s )})
692, 5, 6, 67, 68halfcut 28431 . 2 (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = ((𝐴 +s (𝐴 +s 1s )) /su 2s))
7011oveq1d 7446 . 2 (𝜑 → ((𝐴 +s (𝐴 +s 1s )) /su 2s) = (((2s ·s 𝐴) +s 1s ) /su 2s))
71 2ne0s 28419 . . . . 5 2s ≠ 0s
7271a1i 11 . . . 4 (𝜑 → 2s ≠ 0s )
7326, 4, 25, 72divsdird 28274 . . 3 (𝜑 → (((2s ·s 𝐴) +s 1s ) /su 2s) = (((2s ·s 𝐴) /su 2s) +s ( 1s /su 2s)))
742, 25, 72divscan3d 28275 . . . 4 (𝜑 → ((2s ·s 𝐴) /su 2s) = 𝐴)
7574oveq1d 7446 . . 3 (𝜑 → (((2s ·s 𝐴) /su 2s) +s ( 1s /su 2s)) = (𝐴 +s ( 1s /su 2s)))
7673, 75eqtrd 2775 . 2 (𝜑 → (((2s ·s 𝐴) +s 1s ) /su 2s) = (𝐴 +s ( 1s /su 2s)))
7769, 70, 763eqtrd 2779 1 (𝜑 → ({𝐴} |s {(𝐴 +s 1s )}) = (𝐴 +s ( 1s /su 2s)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  c0 4339  𝒫 cpw 4605  {csn 4631   class class class wbr 5148  (class class class)co 7431   No csur 27699   <s cslt 27700   ≤s csle 27804   <<s csslt 27840   |s cscut 27842   0s c0s 27882   1s c1s 27883   +s cadds 28007   -s csubs 28067   ·s cmuls 28147   /su cdivs 28228  0scnn0s 28333  scnns 28334  2sc2s 28409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-dc 10484
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-1s 27885  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069  df-muls 28148  df-divs 28229  df-n0s 28335  df-nns 28336  df-2s 28410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator