![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > notab | Structured version Visualization version GIF version |
Description: A class abstraction defined by a negation. (Contributed by FL, 18-Sep-2010.) |
Ref | Expression |
---|---|
notab | ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3420 | . . 3 ⊢ {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} | |
2 | rabab 3493 | . . 3 ⊢ {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ ¬ 𝜑} | |
3 | 1, 2 | eqtr3i 2755 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = {𝑥 ∣ ¬ 𝜑} |
4 | difab 4300 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ V} ∖ {𝑥 ∣ 𝜑}) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} | |
5 | abid2 2863 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ V} = V | |
6 | 5 | difeq1i 4115 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ V} ∖ {𝑥 ∣ 𝜑}) = (V ∖ {𝑥 ∣ 𝜑}) |
7 | 4, 6 | eqtr3i 2755 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = (V ∖ {𝑥 ∣ 𝜑}) |
8 | 3, 7 | eqtr3i 2755 | 1 ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2702 {crab 3419 Vcvv 3463 ∖ cdif 3942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3420 df-v 3465 df-dif 3948 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |