| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > notab | Structured version Visualization version GIF version | ||
| Description: A class abstraction defined by a negation. (Contributed by FL, 18-Sep-2010.) |
| Ref | Expression |
|---|---|
| notab | ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3396 | . . 3 ⊢ {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} | |
| 2 | rabab 3467 | . . 3 ⊢ {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ ¬ 𝜑} | |
| 3 | 1, 2 | eqtr3i 2756 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = {𝑥 ∣ ¬ 𝜑} |
| 4 | difab 4257 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ V} ∖ {𝑥 ∣ 𝜑}) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} | |
| 5 | abid2 2868 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ V} = V | |
| 6 | 5 | difeq1i 4069 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ V} ∖ {𝑥 ∣ 𝜑}) = (V ∖ {𝑥 ∣ 𝜑}) |
| 7 | 4, 6 | eqtr3i 2756 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = (V ∖ {𝑥 ∣ 𝜑}) |
| 8 | 3, 7 | eqtr3i 2756 | 1 ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 {crab 3395 Vcvv 3436 ∖ cdif 3894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 |
| This theorem is referenced by: dmcnvep 38422 |
| Copyright terms: Public domain | W3C validator |