MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notab Structured version   Visualization version   GIF version

Theorem notab 4323
Description: A class abstraction defined by a negation. (Contributed by FL, 18-Sep-2010.)
Assertion
Ref Expression
notab {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥𝜑})

Proof of Theorem notab
StepHypRef Expression
1 df-rab 3437 . . 3 {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)}
2 rabab 3513 . . 3 {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ ¬ 𝜑}
31, 2eqtr3i 2767 . 2 {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = {𝑥 ∣ ¬ 𝜑}
4 difab 4319 . . 3 ({𝑥𝑥 ∈ V} ∖ {𝑥𝜑}) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)}
5 abid2 2879 . . . 4 {𝑥𝑥 ∈ V} = V
65difeq1i 4135 . . 3 ({𝑥𝑥 ∈ V} ∖ {𝑥𝜑}) = (V ∖ {𝑥𝜑})
74, 6eqtr3i 2767 . 2 {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = (V ∖ {𝑥𝜑})
83, 7eqtr3i 2767 1 {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wcel 2108  {cab 2714  {crab 3436  Vcvv 3481  cdif 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3483  df-dif 3969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator