![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > notab | Structured version Visualization version GIF version |
Description: A class abstraction defined by a negation. (Contributed by FL, 18-Sep-2010.) |
Ref | Expression |
---|---|
notab | ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3444 | . . 3 ⊢ {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} | |
2 | rabab 3520 | . . 3 ⊢ {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ ¬ 𝜑} | |
3 | 1, 2 | eqtr3i 2770 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = {𝑥 ∣ ¬ 𝜑} |
4 | difab 4329 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ V} ∖ {𝑥 ∣ 𝜑}) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} | |
5 | abid2 2882 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ V} = V | |
6 | 5 | difeq1i 4145 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ V} ∖ {𝑥 ∣ 𝜑}) = (V ∖ {𝑥 ∣ 𝜑}) |
7 | 4, 6 | eqtr3i 2770 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = (V ∖ {𝑥 ∣ 𝜑}) |
8 | 3, 7 | eqtr3i 2770 | 1 ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 {crab 3443 Vcvv 3488 ∖ cdif 3973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |