Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  notab Structured version   Visualization version   GIF version

Theorem notab 4225
 Description: A class abstraction defined by a negation. (Contributed by FL, 18-Sep-2010.)
Assertion
Ref Expression
notab {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥𝜑})

Proof of Theorem notab
StepHypRef Expression
1 df-rab 3115 . . 3 {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)}
2 rabab 3470 . . 3 {𝑥 ∈ V ∣ ¬ 𝜑} = {𝑥 ∣ ¬ 𝜑}
31, 2eqtr3i 2823 . 2 {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = {𝑥 ∣ ¬ 𝜑}
4 difab 4224 . . 3 ({𝑥𝑥 ∈ V} ∖ {𝑥𝜑}) = {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)}
5 abid2 2932 . . . 4 {𝑥𝑥 ∈ V} = V
65difeq1i 4046 . . 3 ({𝑥𝑥 ∈ V} ∖ {𝑥𝜑}) = (V ∖ {𝑥𝜑})
74, 6eqtr3i 2823 . 2 {𝑥 ∣ (𝑥 ∈ V ∧ ¬ 𝜑)} = (V ∖ {𝑥𝜑})
83, 7eqtr3i 2823 1 {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥𝜑})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∧ wa 399   = wceq 1538   ∈ wcel 2111  {cab 2776  {crab 3110  Vcvv 3441   ∖ cdif 3878 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-rab 3115  df-v 3443  df-dif 3884 This theorem is referenced by:  dfif3  4439
 Copyright terms: Public domain W3C validator