| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvel | Structured version Visualization version GIF version | ||
| Description: The universal class does not belong to any class. (Contributed by FL, 31-Dec-2006.) |
| Ref | Expression |
|---|---|
| nvel | ⊢ ¬ V ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 5290 | . 2 ⊢ ¬ V ∈ V | |
| 2 | elex 3485 | . 2 ⊢ (V ∈ 𝐴 → V ∈ V) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ V ∈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 |
| This theorem is referenced by: curryset 36969 currysetlem3 36972 eliuniincex 45113 eliincex 45114 nvelim 47132 |
| Copyright terms: Public domain | W3C validator |