MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvel Structured version   Visualization version   GIF version

Theorem nvel 5310
Description: The universal class does not belong to any class. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
nvel ¬ V ∈ 𝐴

Proof of Theorem nvel
StepHypRef Expression
1 vprc 5309 . 2 ¬ V ∈ V
2 elex 3488 . 2 (V ∈ 𝐴 → V ∈ V)
31, 2mto 196 1 ¬ V ∈ 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2099  Vcvv 3469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698  ax-sep 5293
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3471
This theorem is referenced by:  curryset  36415  currysetlem3  36418  eliuniincex  44447  eliincex  44448  nvelim  46475
  Copyright terms: Public domain W3C validator