MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvel Structured version   Visualization version   GIF version

Theorem nvel 5298
Description: The universal class does not belong to any class. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
nvel ¬ V ∈ 𝐴

Proof of Theorem nvel
StepHypRef Expression
1 vprc 5297 . 2 ¬ V ∈ V
2 elex 3485 . 2 (V ∈ 𝐴 → V ∈ V)
31, 2mto 197 1 ¬ V ∈ 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2107  Vcvv 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3466
This theorem is referenced by:  curryset  36888  currysetlem3  36891  eliuniincex  45059  eliincex  45060  nvelim  47081
  Copyright terms: Public domain W3C validator