![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvel | Structured version Visualization version GIF version |
Description: The universal class does not belong to any class. (Contributed by FL, 31-Dec-2006.) |
Ref | Expression |
---|---|
nvel | ⊢ ¬ V ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 5309 | . 2 ⊢ ¬ V ∈ V | |
2 | elex 3488 | . 2 ⊢ (V ∈ 𝐴 → V ∈ V) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ V ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2099 Vcvv 3469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 |
This theorem is referenced by: curryset 36415 currysetlem3 36418 eliuniincex 44447 eliincex 44448 nvelim 46475 |
Copyright terms: Public domain | W3C validator |