MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvel Structured version   Visualization version   GIF version

Theorem nvel 5256
Description: The universal class does not belong to any class. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
nvel ¬ V ∈ 𝐴

Proof of Theorem nvel
StepHypRef Expression
1 vprc 5255 . 2 ¬ V ∈ V
2 elex 3458 . 2 (V ∈ 𝐴 → V ∈ V)
31, 2mto 197 1 ¬ V ∈ 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2113  Vcvv 3437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439
This theorem is referenced by:  onvf1odlem1  35168  curryset  37011  currysetlem3  37014  eliuniincex  45230  eliincex  45231  nvelim  47247
  Copyright terms: Public domain W3C validator