![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvel | Structured version Visualization version GIF version |
Description: The universal class does not belong to any class. (Contributed by FL, 31-Dec-2006.) |
Ref | Expression |
---|---|
nvel | ⊢ ¬ V ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 5315 | . 2 ⊢ ¬ V ∈ V | |
2 | elex 3492 | . 2 ⊢ (V ∈ 𝐴 → V ∈ V) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ V ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 Vcvv 3474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 |
This theorem is referenced by: curryset 35822 currysetlem3 35825 eliuniincex 43788 eliincex 43789 nvelim 45821 |
Copyright terms: Public domain | W3C validator |