| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvel | Structured version Visualization version GIF version | ||
| Description: The universal class does not belong to any class. (Contributed by FL, 31-Dec-2006.) |
| Ref | Expression |
|---|---|
| nvel | ⊢ ¬ V ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vprc 5255 | . 2 ⊢ ¬ V ∈ V | |
| 2 | elex 3458 | . 2 ⊢ (V ∈ 𝐴 → V ∈ V) | |
| 3 | 1, 2 | mto 197 | 1 ⊢ ¬ V ∈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2113 Vcvv 3437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 |
| This theorem is referenced by: onvf1odlem1 35168 curryset 37011 currysetlem3 37014 eliuniincex 45230 eliincex 45231 nvelim 47247 |
| Copyright terms: Public domain | W3C validator |