MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvel Structured version   Visualization version   GIF version

Theorem nvel 5316
Description: The universal class does not belong to any class. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
nvel ¬ V ∈ 𝐴

Proof of Theorem nvel
StepHypRef Expression
1 vprc 5315 . 2 ¬ V ∈ V
2 elex 3492 . 2 (V ∈ 𝐴 → V ∈ V)
31, 2mto 196 1 ¬ V ∈ 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2106  Vcvv 3474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476
This theorem is referenced by:  curryset  35822  currysetlem3  35825  eliuniincex  43788  eliincex  43789  nvelim  45821
  Copyright terms: Public domain W3C validator