![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvel | Structured version Visualization version GIF version |
Description: The universal class does not belong to any class. (Contributed by FL, 31-Dec-2006.) |
Ref | Expression |
---|---|
nvel | ⊢ ¬ V ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 5321 | . 2 ⊢ ¬ V ∈ V | |
2 | elex 3499 | . 2 ⊢ (V ∈ 𝐴 → V ∈ V) | |
3 | 1, 2 | mto 197 | 1 ⊢ ¬ V ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 Vcvv 3478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 |
This theorem is referenced by: curryset 36929 currysetlem3 36932 eliuniincex 45049 eliincex 45050 nvelim 47073 |
Copyright terms: Public domain | W3C validator |