Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvel | Structured version Visualization version GIF version |
Description: The universal class does not belong to any class. (Contributed by FL, 31-Dec-2006.) |
Ref | Expression |
---|---|
nvel | ⊢ ¬ V ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 5239 | . 2 ⊢ ¬ V ∈ V | |
2 | elex 3450 | . 2 ⊢ (V ∈ 𝐴 → V ∈ V) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ V ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 |
This theorem is referenced by: curryset 35135 currysetlem3 35138 eliuniincex 42659 eliincex 42660 nvelim 44615 |
Copyright terms: Public domain | W3C validator |