Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliuniincex Structured version   Visualization version   GIF version

Theorem eliuniincex 42332
Description: Counterexample to show that the additional conditions in eliuniin 42322 and eliuniin2 42342 are actually needed. Notice that the definition of 𝐴 is not even needed (it can be any class). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
eliuniincex.1 𝐵 = {∅}
eliuniincex.2 𝐶 = ∅
eliuniincex.3 𝐷 = ∅
eliuniincex.4 𝑍 = V
Assertion
Ref Expression
eliuniincex ¬ (𝑍𝐴 ↔ ∃𝑥𝐵𝑦𝐶 𝑍𝐷)
Distinct variable groups:   𝑥,𝐵   𝑦,𝐶   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑥)   𝐷(𝑥,𝑦)   𝑍(𝑦)

Proof of Theorem eliuniincex
StepHypRef Expression
1 eliuniincex.4 . . 3 𝑍 = V
2 nvel 5209 . . 3 ¬ V ∈ 𝐴
31, 2eqneltri 2831 . 2 ¬ 𝑍𝐴
4 0ex 5200 . . . . 5 ∅ ∈ V
54snid 4577 . . . 4 ∅ ∈ {∅}
6 eliuniincex.1 . . . 4 𝐵 = {∅}
75, 6eleqtrri 2837 . . 3 ∅ ∈ 𝐵
8 ral0 4424 . . 3 𝑦 ∈ ∅ 𝑍𝐷
9 nfcv 2904 . . . . 5 𝑥
10 nfcv 2904 . . . . . 6 𝑥𝑍
11 eliuniincex.3 . . . . . . 7 𝐷 = ∅
1211, 9nfcxfr 2902 . . . . . 6 𝑥𝐷
1310, 12nfel 2918 . . . . 5 𝑥 𝑍𝐷
149, 13nfral 3148 . . . 4 𝑥𝑦 ∈ ∅ 𝑍𝐷
15 eliuniincex.2 . . . . . 6 𝐶 = ∅
1615raleqi 3323 . . . . 5 (∀𝑦𝐶 𝑍𝐷 ↔ ∀𝑦 ∈ ∅ 𝑍𝐷)
1716a1i 11 . . . 4 (𝑥 = ∅ → (∀𝑦𝐶 𝑍𝐷 ↔ ∀𝑦 ∈ ∅ 𝑍𝐷))
1814, 17rspce 3526 . . 3 ((∅ ∈ 𝐵 ∧ ∀𝑦 ∈ ∅ 𝑍𝐷) → ∃𝑥𝐵𝑦𝐶 𝑍𝐷)
197, 8, 18mp2an 692 . 2 𝑥𝐵𝑦𝐶 𝑍𝐷
20 pm3.22 463 . . . 4 ((¬ 𝑍𝐴 ∧ ∃𝑥𝐵𝑦𝐶 𝑍𝐷) → (∃𝑥𝐵𝑦𝐶 𝑍𝐷 ∧ ¬ 𝑍𝐴))
2120olcd 874 . . 3 ((¬ 𝑍𝐴 ∧ ∃𝑥𝐵𝑦𝐶 𝑍𝐷) → ((𝑍𝐴 ∧ ¬ ∃𝑥𝐵𝑦𝐶 𝑍𝐷) ∨ (∃𝑥𝐵𝑦𝐶 𝑍𝐷 ∧ ¬ 𝑍𝐴)))
22 xor 1015 . . 3 (¬ (𝑍𝐴 ↔ ∃𝑥𝐵𝑦𝐶 𝑍𝐷) ↔ ((𝑍𝐴 ∧ ¬ ∃𝑥𝐵𝑦𝐶 𝑍𝐷) ∨ (∃𝑥𝐵𝑦𝐶 𝑍𝐷 ∧ ¬ 𝑍𝐴)))
2321, 22sylibr 237 . 2 ((¬ 𝑍𝐴 ∧ ∃𝑥𝐵𝑦𝐶 𝑍𝐷) → ¬ (𝑍𝐴 ↔ ∃𝑥𝐵𝑦𝐶 𝑍𝐷))
243, 19, 23mp2an 692 1 ¬ (𝑍𝐴 ↔ ∃𝑥𝐵𝑦𝐶 𝑍𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  wo 847   = wceq 1543  wcel 2110  wral 3061  wrex 3062  Vcvv 3408  c0 4237  {csn 4541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-13 2371  ax-ext 2708  ax-sep 5192  ax-nul 5199
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-v 3410  df-dif 3869  df-nul 4238  df-sn 4542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator