Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliuniincex | Structured version Visualization version GIF version |
Description: Counterexample to show that the additional conditions in eliuniin 42649 and eliuniin2 42669 are actually needed. Notice that the definition of 𝐴 is not even needed (it can be any class). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
eliuniincex.1 | ⊢ 𝐵 = {∅} |
eliuniincex.2 | ⊢ 𝐶 = ∅ |
eliuniincex.3 | ⊢ 𝐷 = ∅ |
eliuniincex.4 | ⊢ 𝑍 = V |
Ref | Expression |
---|---|
eliuniincex | ⊢ ¬ (𝑍 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliuniincex.4 | . . 3 ⊢ 𝑍 = V | |
2 | nvel 5240 | . . 3 ⊢ ¬ V ∈ 𝐴 | |
3 | 1, 2 | eqneltri 2832 | . 2 ⊢ ¬ 𝑍 ∈ 𝐴 |
4 | 0ex 5231 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 4 | snid 4597 | . . . 4 ⊢ ∅ ∈ {∅} |
6 | eliuniincex.1 | . . . 4 ⊢ 𝐵 = {∅} | |
7 | 5, 6 | eleqtrri 2838 | . . 3 ⊢ ∅ ∈ 𝐵 |
8 | ral0 4443 | . . 3 ⊢ ∀𝑦 ∈ ∅ 𝑍 ∈ 𝐷 | |
9 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥∅ | |
10 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥𝑍 | |
11 | eliuniincex.3 | . . . . . . 7 ⊢ 𝐷 = ∅ | |
12 | 11, 9 | nfcxfr 2905 | . . . . . 6 ⊢ Ⅎ𝑥𝐷 |
13 | 10, 12 | nfel 2921 | . . . . 5 ⊢ Ⅎ𝑥 𝑍 ∈ 𝐷 |
14 | 9, 13 | nfral 3153 | . . . 4 ⊢ Ⅎ𝑥∀𝑦 ∈ ∅ 𝑍 ∈ 𝐷 |
15 | eliuniincex.2 | . . . . . 6 ⊢ 𝐶 = ∅ | |
16 | 15 | raleqi 3346 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ↔ ∀𝑦 ∈ ∅ 𝑍 ∈ 𝐷) |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝑥 = ∅ → (∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ↔ ∀𝑦 ∈ ∅ 𝑍 ∈ 𝐷)) |
18 | 14, 17 | rspce 3550 | . . 3 ⊢ ((∅ ∈ 𝐵 ∧ ∀𝑦 ∈ ∅ 𝑍 ∈ 𝐷) → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷) |
19 | 7, 8, 18 | mp2an 689 | . 2 ⊢ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 |
20 | pm3.22 460 | . . . 4 ⊢ ((¬ 𝑍 ∈ 𝐴 ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷) → (∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ∧ ¬ 𝑍 ∈ 𝐴)) | |
21 | 20 | olcd 871 | . . 3 ⊢ ((¬ 𝑍 ∈ 𝐴 ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷) → ((𝑍 ∈ 𝐴 ∧ ¬ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷) ∨ (∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ∧ ¬ 𝑍 ∈ 𝐴))) |
22 | xor 1012 | . . 3 ⊢ (¬ (𝑍 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷) ↔ ((𝑍 ∈ 𝐴 ∧ ¬ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷) ∨ (∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷 ∧ ¬ 𝑍 ∈ 𝐴))) | |
23 | 21, 22 | sylibr 233 | . 2 ⊢ ((¬ 𝑍 ∈ 𝐴 ∧ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷) → ¬ (𝑍 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷)) |
24 | 3, 19, 23 | mp2an 689 | 1 ⊢ ¬ (𝑍 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ∅c0 4256 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 ax-ext 2709 ax-sep 5223 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-nul 4257 df-sn 4562 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |