| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliincex | Structured version Visualization version GIF version | ||
| Description: Counterexample to show that the additional conditions in eliin 4941 and eliin2 45153 are actually needed. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| eliinct.1 | ⊢ 𝐴 = V |
| eliinct.2 | ⊢ 𝐵 = ∅ |
| Ref | Expression |
|---|---|
| eliincex | ⊢ ¬ (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliinct.1 | . . 3 ⊢ 𝐴 = V | |
| 2 | nvel 5249 | . . 3 ⊢ ¬ V ∈ ∩ 𝑥 ∈ 𝐵 𝐶 | |
| 3 | 1, 2 | eqneltri 2850 | . 2 ⊢ ¬ 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 |
| 4 | ral0 4458 | . . 3 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ 𝐶 | |
| 5 | eliinct.2 | . . . 4 ⊢ 𝐵 = ∅ | |
| 6 | 5 | raleqi 3290 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ↔ ∀𝑥 ∈ ∅ 𝐴 ∈ 𝐶) |
| 7 | 4, 6 | mpbir 231 | . 2 ⊢ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 |
| 8 | pm3.22 459 | . . . 4 ⊢ ((¬ 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) → (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶)) | |
| 9 | 8 | olcd 874 | . . 3 ⊢ ((¬ 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) → ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ ¬ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) ∨ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶))) |
| 10 | xor 1016 | . . 3 ⊢ (¬ (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) ↔ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ ¬ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) ∨ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶))) | |
| 11 | 9, 10 | sylibr 234 | . 2 ⊢ ((¬ 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) → ¬ (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| 12 | 3, 7, 11 | mp2an 692 | 1 ⊢ ¬ (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∅c0 4278 ∩ ciin 4937 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-dif 3900 df-nul 4279 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |