Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliincex Structured version   Visualization version   GIF version

Theorem eliincex 39815
Description: Counterexample to show that the additional conditions in eliin 4660 and eliin2 39821 are actually needed. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
eliinct.1 𝐴 = V
eliinct.2 𝐵 = ∅
Assertion
Ref Expression
eliincex ¬ (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem eliincex
StepHypRef Expression
1 eliinct.1 . . 3 𝐴 = V
2 nvel 4933 . . 3 ¬ V ∈ 𝑥𝐵 𝐶
31, 2eqneltri 39768 . 2 ¬ 𝐴 𝑥𝐵 𝐶
4 ral0 4218 . . 3 𝑥 ∈ ∅ 𝐴𝐶
5 eliinct.2 . . . 4 𝐵 = ∅
65raleqi 3291 . . 3 (∀𝑥𝐵 𝐴𝐶 ↔ ∀𝑥 ∈ ∅ 𝐴𝐶)
74, 6mpbir 221 . 2 𝑥𝐵 𝐴𝐶
8 pm3.22 449 . . . 4 ((¬ 𝐴 𝑥𝐵 𝐶 ∧ ∀𝑥𝐵 𝐴𝐶) → (∀𝑥𝐵 𝐴𝐶 ∧ ¬ 𝐴 𝑥𝐵 𝐶))
98olcd 855 . . 3 ((¬ 𝐴 𝑥𝐵 𝐶 ∧ ∀𝑥𝐵 𝐴𝐶) → ((𝐴 𝑥𝐵 𝐶 ∧ ¬ ∀𝑥𝐵 𝐴𝐶) ∨ (∀𝑥𝐵 𝐴𝐶 ∧ ¬ 𝐴 𝑥𝐵 𝐶)))
10 xor 989 . . 3 (¬ (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶) ↔ ((𝐴 𝑥𝐵 𝐶 ∧ ¬ ∀𝑥𝐵 𝐴𝐶) ∨ (∀𝑥𝐵 𝐴𝐶 ∧ ¬ 𝐴 𝑥𝐵 𝐶)))
119, 10sylibr 224 . 2 ((¬ 𝐴 𝑥𝐵 𝐶 ∧ ∀𝑥𝐵 𝐴𝐶) → ¬ (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
123, 7, 11mp2an 666 1 ¬ (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 382  wo 828   = wceq 1631  wcel 2145  wral 3061  Vcvv 3351  c0 4064   ciin 4656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-v 3353  df-dif 3727  df-nul 4065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator