Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliincex | Structured version Visualization version GIF version |
Description: Counterexample to show that the additional conditions in eliin 4926 and eliin2 42554 are actually needed. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
eliinct.1 | ⊢ 𝐴 = V |
eliinct.2 | ⊢ 𝐵 = ∅ |
Ref | Expression |
---|---|
eliincex | ⊢ ¬ (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliinct.1 | . . 3 ⊢ 𝐴 = V | |
2 | nvel 5235 | . . 3 ⊢ ¬ V ∈ ∩ 𝑥 ∈ 𝐵 𝐶 | |
3 | 1, 2 | eqneltri 2832 | . 2 ⊢ ¬ 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 |
4 | ral0 4440 | . . 3 ⊢ ∀𝑥 ∈ ∅ 𝐴 ∈ 𝐶 | |
5 | eliinct.2 | . . . 4 ⊢ 𝐵 = ∅ | |
6 | 5 | raleqi 3337 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ↔ ∀𝑥 ∈ ∅ 𝐴 ∈ 𝐶) |
7 | 4, 6 | mpbir 230 | . 2 ⊢ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 |
8 | pm3.22 459 | . . . 4 ⊢ ((¬ 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) → (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶)) | |
9 | 8 | olcd 870 | . . 3 ⊢ ((¬ 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) → ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ ¬ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) ∨ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶))) |
10 | xor 1011 | . . 3 ⊢ (¬ (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) ↔ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ ¬ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) ∨ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶))) | |
11 | 9, 10 | sylibr 233 | . 2 ⊢ ((¬ 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) → ¬ (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
12 | 3, 7, 11 | mp2an 688 | 1 ⊢ ¬ (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ∅c0 4253 ∩ ciin 4922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-dif 3886 df-nul 4254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |