Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onintss | Structured version Visualization version GIF version |
Description: If a property is true for an ordinal number, then the minimum ordinal number for which it is true is smaller or equal. Theorem Schema 61 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.) |
Ref | Expression |
---|---|
onintss.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
onintss | ⊢ (𝐴 ∈ On → (𝜓 → ∩ {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onintss.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | intminss 4905 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝜓) → ∩ {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴) |
3 | 2 | ex 413 | 1 ⊢ (𝐴 ∈ On → (𝜓 → ∩ {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 {crab 3068 ⊆ wss 3887 ∩ cint 4879 Oncon0 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-int 4880 |
This theorem is referenced by: rankval3b 9584 cardne 9723 noextenddif 33871 |
Copyright terms: Public domain | W3C validator |