MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onintss Structured version   Visualization version   GIF version

Theorem onintss 6387
Description: If a property is true for an ordinal number, then the minimum ordinal number for which it is true is smaller or equal. Theorem Schema 61 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.)
Hypothesis
Ref Expression
onintss.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
onintss (𝐴 ∈ On → (𝜓 {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem onintss
StepHypRef Expression
1 onintss.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21intminss 4941 . 2 ((𝐴 ∈ On ∧ 𝜓) → {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴)
32ex 412 1 (𝐴 ∈ On → (𝜓 {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {crab 3408  wss 3917   cint 4913  Oncon0 6335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-ss 3934  df-int 4914
This theorem is referenced by:  rankval3b  9786  cardne  9925  noextenddif  27587
  Copyright terms: Public domain W3C validator