| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onintss | Structured version Visualization version GIF version | ||
| Description: If a property is true for an ordinal number, then the minimum ordinal number for which it is true is smaller or equal. Theorem Schema 61 of [Suppes] p. 228. (Contributed by NM, 3-Oct-2003.) |
| Ref | Expression |
|---|---|
| onintss.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| onintss | ⊢ (𝐴 ∈ On → (𝜓 → ∩ {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onintss.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | intminss 4950 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝜓) → ∩ {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴) |
| 3 | 2 | ex 412 | 1 ⊢ (𝐴 ∈ On → (𝜓 → ∩ {𝑥 ∈ On ∣ 𝜑} ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {crab 3415 ⊆ wss 3926 ∩ cint 4922 Oncon0 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-ss 3943 df-int 4923 |
| This theorem is referenced by: rankval3b 9840 cardne 9979 noextenddif 27632 |
| Copyright terms: Public domain | W3C validator |