Step | Hyp | Ref
| Expression |
1 | | nodmon 33780 |
. . 3
⊢ (𝐴 ∈
No → dom 𝐴
∈ On) |
2 | | noextend.1 |
. . . . . 6
⊢ 𝑋 ∈ {1o,
2o} |
3 | 2 | nosgnn0i 33789 |
. . . . 5
⊢ ∅
≠ 𝑋 |
4 | 3 | a1i 11 |
. . . 4
⊢ (𝐴 ∈
No → ∅ ≠ 𝑋) |
5 | | nodmord 33783 |
. . . . . 6
⊢ (𝐴 ∈
No → Ord dom 𝐴) |
6 | | ordirr 6269 |
. . . . . 6
⊢ (Ord dom
𝐴 → ¬ dom 𝐴 ∈ dom 𝐴) |
7 | 5, 6 | syl 17 |
. . . . 5
⊢ (𝐴 ∈
No → ¬ dom 𝐴 ∈ dom 𝐴) |
8 | | ndmfv 6786 |
. . . . 5
⊢ (¬
dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅) |
9 | 7, 8 | syl 17 |
. . . 4
⊢ (𝐴 ∈
No → (𝐴‘dom 𝐴) = ∅) |
10 | | nofun 33779 |
. . . . . . 7
⊢ (𝐴 ∈
No → Fun 𝐴) |
11 | | funfn 6448 |
. . . . . . 7
⊢ (Fun
𝐴 ↔ 𝐴 Fn dom 𝐴) |
12 | 10, 11 | sylib 217 |
. . . . . 6
⊢ (𝐴 ∈
No → 𝐴 Fn dom
𝐴) |
13 | | fnsng 6470 |
. . . . . . 7
⊢ ((dom
𝐴 ∈ On ∧ 𝑋 ∈ {1o,
2o}) → {〈dom 𝐴, 𝑋〉} Fn {dom 𝐴}) |
14 | 1, 2, 13 | sylancl 585 |
. . . . . 6
⊢ (𝐴 ∈
No → {〈dom 𝐴, 𝑋〉} Fn {dom 𝐴}) |
15 | | disjsn 4644 |
. . . . . . 7
⊢ ((dom
𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom
𝐴 ∈ dom 𝐴) |
16 | 7, 15 | sylibr 233 |
. . . . . 6
⊢ (𝐴 ∈
No → (dom 𝐴
∩ {dom 𝐴}) =
∅) |
17 | | snidg 4592 |
. . . . . . 7
⊢ (dom
𝐴 ∈ On → dom
𝐴 ∈ {dom 𝐴}) |
18 | 1, 17 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈
No → dom 𝐴
∈ {dom 𝐴}) |
19 | | fvun2 6842 |
. . . . . 6
⊢ ((𝐴 Fn dom 𝐴 ∧ {〈dom 𝐴, 𝑋〉} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ dom 𝐴 ∈ {dom 𝐴})) → ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘dom 𝐴) = ({〈dom 𝐴, 𝑋〉}‘dom 𝐴)) |
20 | 12, 14, 16, 18, 19 | syl112anc 1372 |
. . . . 5
⊢ (𝐴 ∈
No → ((𝐴 ∪
{〈dom 𝐴, 𝑋〉})‘dom 𝐴) = ({〈dom 𝐴, 𝑋〉}‘dom 𝐴)) |
21 | | fvsng 7034 |
. . . . . 6
⊢ ((dom
𝐴 ∈ On ∧ 𝑋 ∈ {1o,
2o}) → ({〈dom 𝐴, 𝑋〉}‘dom 𝐴) = 𝑋) |
22 | 1, 2, 21 | sylancl 585 |
. . . . 5
⊢ (𝐴 ∈
No → ({〈dom 𝐴, 𝑋〉}‘dom 𝐴) = 𝑋) |
23 | 20, 22 | eqtrd 2778 |
. . . 4
⊢ (𝐴 ∈
No → ((𝐴 ∪
{〈dom 𝐴, 𝑋〉})‘dom 𝐴) = 𝑋) |
24 | 4, 9, 23 | 3netr4d 3020 |
. . 3
⊢ (𝐴 ∈
No → (𝐴‘dom 𝐴) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘dom 𝐴)) |
25 | | fveq2 6756 |
. . . . 5
⊢ (𝑥 = dom 𝐴 → (𝐴‘𝑥) = (𝐴‘dom 𝐴)) |
26 | | fveq2 6756 |
. . . . 5
⊢ (𝑥 = dom 𝐴 → ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑥) = ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘dom 𝐴)) |
27 | 25, 26 | neeq12d 3004 |
. . . 4
⊢ (𝑥 = dom 𝐴 → ((𝐴‘𝑥) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑥) ↔ (𝐴‘dom 𝐴) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘dom 𝐴))) |
28 | 27 | onintss 6301 |
. . 3
⊢ (dom
𝐴 ∈ On → ((𝐴‘dom 𝐴) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘dom 𝐴) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑥)} ⊆ dom 𝐴)) |
29 | 1, 24, 28 | sylc 65 |
. 2
⊢ (𝐴 ∈
No → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑥)} ⊆ dom 𝐴) |
30 | | eloni 6261 |
. . . . . . . 8
⊢ (𝑦 ∈ On → Ord 𝑦) |
31 | | ordtri2 6286 |
. . . . . . . . . 10
⊢ ((Ord
𝑦 ∧ Ord dom 𝐴) → (𝑦 ∈ dom 𝐴 ↔ ¬ (𝑦 = dom 𝐴 ∨ dom 𝐴 ∈ 𝑦))) |
32 | | eqcom 2745 |
. . . . . . . . . . . . 13
⊢ (𝑦 = dom 𝐴 ↔ dom 𝐴 = 𝑦) |
33 | 32 | orbi1i 910 |
. . . . . . . . . . . 12
⊢ ((𝑦 = dom 𝐴 ∨ dom 𝐴 ∈ 𝑦) ↔ (dom 𝐴 = 𝑦 ∨ dom 𝐴 ∈ 𝑦)) |
34 | | orcom 866 |
. . . . . . . . . . . 12
⊢ ((dom
𝐴 = 𝑦 ∨ dom 𝐴 ∈ 𝑦) ↔ (dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦)) |
35 | 33, 34 | bitri 274 |
. . . . . . . . . . 11
⊢ ((𝑦 = dom 𝐴 ∨ dom 𝐴 ∈ 𝑦) ↔ (dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦)) |
36 | 35 | notbii 319 |
. . . . . . . . . 10
⊢ (¬
(𝑦 = dom 𝐴 ∨ dom 𝐴 ∈ 𝑦) ↔ ¬ (dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦)) |
37 | 31, 36 | bitrdi 286 |
. . . . . . . . 9
⊢ ((Ord
𝑦 ∧ Ord dom 𝐴) → (𝑦 ∈ dom 𝐴 ↔ ¬ (dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦))) |
38 | | ordsseleq 6280 |
. . . . . . . . . . 11
⊢ ((Ord dom
𝐴 ∧ Ord 𝑦) → (dom 𝐴 ⊆ 𝑦 ↔ (dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦))) |
39 | 38 | notbid 317 |
. . . . . . . . . 10
⊢ ((Ord dom
𝐴 ∧ Ord 𝑦) → (¬ dom 𝐴 ⊆ 𝑦 ↔ ¬ (dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦))) |
40 | 39 | ancoms 458 |
. . . . . . . . 9
⊢ ((Ord
𝑦 ∧ Ord dom 𝐴) → (¬ dom 𝐴 ⊆ 𝑦 ↔ ¬ (dom 𝐴 ∈ 𝑦 ∨ dom 𝐴 = 𝑦))) |
41 | 37, 40 | bitr4d 281 |
. . . . . . . 8
⊢ ((Ord
𝑦 ∧ Ord dom 𝐴) → (𝑦 ∈ dom 𝐴 ↔ ¬ dom 𝐴 ⊆ 𝑦)) |
42 | 30, 5, 41 | syl2anr 596 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝑦 ∈
On) → (𝑦 ∈ dom
𝐴 ↔ ¬ dom 𝐴 ⊆ 𝑦)) |
43 | 12 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
No ∧ 𝑦 ∈
On ∧ 𝑦 ∈ dom 𝐴) → 𝐴 Fn dom 𝐴) |
44 | 14 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
No ∧ 𝑦 ∈
On ∧ 𝑦 ∈ dom 𝐴) → {〈dom 𝐴, 𝑋〉} Fn {dom 𝐴}) |
45 | 16 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
No ∧ 𝑦 ∈
On ∧ 𝑦 ∈ dom 𝐴) → (dom 𝐴 ∩ {dom 𝐴}) = ∅) |
46 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
No ∧ 𝑦 ∈
On ∧ 𝑦 ∈ dom 𝐴) → 𝑦 ∈ dom 𝐴) |
47 | | fvun1 6841 |
. . . . . . . . . 10
⊢ ((𝐴 Fn dom 𝐴 ∧ {〈dom 𝐴, 𝑋〉} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ 𝑦 ∈ dom 𝐴)) → ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑦) = (𝐴‘𝑦)) |
48 | 43, 44, 45, 46, 47 | syl112anc 1372 |
. . . . . . . . 9
⊢ ((𝐴 ∈
No ∧ 𝑦 ∈
On ∧ 𝑦 ∈ dom 𝐴) → ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑦) = (𝐴‘𝑦)) |
49 | 48 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝐴 ∈
No ∧ 𝑦 ∈
On ∧ 𝑦 ∈ dom 𝐴) → (𝐴‘𝑦) = ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑦)) |
50 | 49 | 3expia 1119 |
. . . . . . 7
⊢ ((𝐴 ∈
No ∧ 𝑦 ∈
On) → (𝑦 ∈ dom
𝐴 → (𝐴‘𝑦) = ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑦))) |
51 | 42, 50 | sylbird 259 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝑦 ∈
On) → (¬ dom 𝐴
⊆ 𝑦 → (𝐴‘𝑦) = ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑦))) |
52 | 51 | necon1ad 2959 |
. . . . 5
⊢ ((𝐴 ∈
No ∧ 𝑦 ∈
On) → ((𝐴‘𝑦) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑦) → dom 𝐴 ⊆ 𝑦)) |
53 | 52 | ralrimiva 3107 |
. . . 4
⊢ (𝐴 ∈
No → ∀𝑦
∈ On ((𝐴‘𝑦) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑦) → dom 𝐴 ⊆ 𝑦)) |
54 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐴‘𝑥) = (𝐴‘𝑦)) |
55 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑥) = ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑦)) |
56 | 54, 55 | neeq12d 3004 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐴‘𝑥) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑥) ↔ (𝐴‘𝑦) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑦))) |
57 | 56 | ralrab 3623 |
. . . 4
⊢
(∀𝑦 ∈
{𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑥)}dom 𝐴 ⊆ 𝑦 ↔ ∀𝑦 ∈ On ((𝐴‘𝑦) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑦) → dom 𝐴 ⊆ 𝑦)) |
58 | 53, 57 | sylibr 233 |
. . 3
⊢ (𝐴 ∈
No → ∀𝑦
∈ {𝑥 ∈ On ∣
(𝐴‘𝑥) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑥)}dom 𝐴 ⊆ 𝑦) |
59 | | ssint 4892 |
. . 3
⊢ (dom
𝐴 ⊆ ∩ {𝑥
∈ On ∣ (𝐴‘𝑥) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑥)} ↔ ∀𝑦 ∈ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑥)}dom 𝐴 ⊆ 𝑦) |
60 | 58, 59 | sylibr 233 |
. 2
⊢ (𝐴 ∈
No → dom 𝐴
⊆ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑥)}) |
61 | 29, 60 | eqssd 3934 |
1
⊢ (𝐴 ∈
No → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ ((𝐴 ∪ {〈dom 𝐴, 𝑋〉})‘𝑥)} = dom 𝐴) |