MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noextenddif Structured version   Visualization version   GIF version

Theorem noextenddif 27580
Description: Calculate the place where a surreal and its extension differ. (Contributed by Scott Fenton, 22-Nov-2021.)
Hypothesis
Ref Expression
noextend.1 𝑋 ∈ {1o, 2o}
Assertion
Ref Expression
noextenddif (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} = dom 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋

Proof of Theorem noextenddif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nodmon 27562 . . 3 (𝐴 No → dom 𝐴 ∈ On)
2 noextend.1 . . . . . 6 𝑋 ∈ {1o, 2o}
32nosgnn0i 27571 . . . . 5 ∅ ≠ 𝑋
43a1i 11 . . . 4 (𝐴 No → ∅ ≠ 𝑋)
5 nodmord 27565 . . . . . 6 (𝐴 No → Ord dom 𝐴)
6 ordirr 6350 . . . . . 6 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
75, 6syl 17 . . . . 5 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
8 ndmfv 6893 . . . . 5 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
97, 8syl 17 . . . 4 (𝐴 No → (𝐴‘dom 𝐴) = ∅)
10 nofun 27561 . . . . . . 7 (𝐴 No → Fun 𝐴)
11 funfn 6546 . . . . . . 7 (Fun 𝐴𝐴 Fn dom 𝐴)
1210, 11sylib 218 . . . . . 6 (𝐴 No 𝐴 Fn dom 𝐴)
13 fnsng 6568 . . . . . . 7 ((dom 𝐴 ∈ On ∧ 𝑋 ∈ {1o, 2o}) → {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴})
141, 2, 13sylancl 586 . . . . . 6 (𝐴 No → {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴})
15 disjsn 4675 . . . . . . 7 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
167, 15sylibr 234 . . . . . 6 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
17 snidg 4624 . . . . . . 7 (dom 𝐴 ∈ On → dom 𝐴 ∈ {dom 𝐴})
181, 17syl 17 . . . . . 6 (𝐴 No → dom 𝐴 ∈ {dom 𝐴})
19 fvun2 6953 . . . . . 6 ((𝐴 Fn dom 𝐴 ∧ {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ dom 𝐴 ∈ {dom 𝐴})) → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴) = ({⟨dom 𝐴, 𝑋⟩}‘dom 𝐴))
2012, 14, 16, 18, 19syl112anc 1376 . . . . 5 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴) = ({⟨dom 𝐴, 𝑋⟩}‘dom 𝐴))
21 fvsng 7154 . . . . . 6 ((dom 𝐴 ∈ On ∧ 𝑋 ∈ {1o, 2o}) → ({⟨dom 𝐴, 𝑋⟩}‘dom 𝐴) = 𝑋)
221, 2, 21sylancl 586 . . . . 5 (𝐴 No → ({⟨dom 𝐴, 𝑋⟩}‘dom 𝐴) = 𝑋)
2320, 22eqtrd 2764 . . . 4 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴) = 𝑋)
244, 9, 233netr4d 3002 . . 3 (𝐴 No → (𝐴‘dom 𝐴) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴))
25 fveq2 6858 . . . . 5 (𝑥 = dom 𝐴 → (𝐴𝑥) = (𝐴‘dom 𝐴))
26 fveq2 6858 . . . . 5 (𝑥 = dom 𝐴 → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴))
2725, 26neeq12d 2986 . . . 4 (𝑥 = dom 𝐴 → ((𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥) ↔ (𝐴‘dom 𝐴) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴)))
2827onintss 6384 . . 3 (dom 𝐴 ∈ On → ((𝐴‘dom 𝐴) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} ⊆ dom 𝐴))
291, 24, 28sylc 65 . 2 (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} ⊆ dom 𝐴)
30 eloni 6342 . . . . . . . 8 (𝑦 ∈ On → Ord 𝑦)
31 ordtri2 6367 . . . . . . . . . 10 ((Ord 𝑦 ∧ Ord dom 𝐴) → (𝑦 ∈ dom 𝐴 ↔ ¬ (𝑦 = dom 𝐴 ∨ dom 𝐴𝑦)))
32 eqcom 2736 . . . . . . . . . . . . 13 (𝑦 = dom 𝐴 ↔ dom 𝐴 = 𝑦)
3332orbi1i 913 . . . . . . . . . . . 12 ((𝑦 = dom 𝐴 ∨ dom 𝐴𝑦) ↔ (dom 𝐴 = 𝑦 ∨ dom 𝐴𝑦))
34 orcom 870 . . . . . . . . . . . 12 ((dom 𝐴 = 𝑦 ∨ dom 𝐴𝑦) ↔ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦))
3533, 34bitri 275 . . . . . . . . . . 11 ((𝑦 = dom 𝐴 ∨ dom 𝐴𝑦) ↔ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦))
3635notbii 320 . . . . . . . . . 10 (¬ (𝑦 = dom 𝐴 ∨ dom 𝐴𝑦) ↔ ¬ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦))
3731, 36bitrdi 287 . . . . . . . . 9 ((Ord 𝑦 ∧ Ord dom 𝐴) → (𝑦 ∈ dom 𝐴 ↔ ¬ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦)))
38 ordsseleq 6361 . . . . . . . . . . 11 ((Ord dom 𝐴 ∧ Ord 𝑦) → (dom 𝐴𝑦 ↔ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦)))
3938notbid 318 . . . . . . . . . 10 ((Ord dom 𝐴 ∧ Ord 𝑦) → (¬ dom 𝐴𝑦 ↔ ¬ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦)))
4039ancoms 458 . . . . . . . . 9 ((Ord 𝑦 ∧ Ord dom 𝐴) → (¬ dom 𝐴𝑦 ↔ ¬ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦)))
4137, 40bitr4d 282 . . . . . . . 8 ((Ord 𝑦 ∧ Ord dom 𝐴) → (𝑦 ∈ dom 𝐴 ↔ ¬ dom 𝐴𝑦))
4230, 5, 41syl2anr 597 . . . . . . 7 ((𝐴 No 𝑦 ∈ On) → (𝑦 ∈ dom 𝐴 ↔ ¬ dom 𝐴𝑦))
43123ad2ant1 1133 . . . . . . . . . 10 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → 𝐴 Fn dom 𝐴)
44143ad2ant1 1133 . . . . . . . . . 10 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴})
45163ad2ant1 1133 . . . . . . . . . 10 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
46 simp3 1138 . . . . . . . . . 10 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → 𝑦 ∈ dom 𝐴)
47 fvun1 6952 . . . . . . . . . 10 ((𝐴 Fn dom 𝐴 ∧ {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ 𝑦 ∈ dom 𝐴)) → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) = (𝐴𝑦))
4843, 44, 45, 46, 47syl112anc 1376 . . . . . . . . 9 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) = (𝐴𝑦))
4948eqcomd 2735 . . . . . . . 8 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → (𝐴𝑦) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦))
50493expia 1121 . . . . . . 7 ((𝐴 No 𝑦 ∈ On) → (𝑦 ∈ dom 𝐴 → (𝐴𝑦) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦)))
5142, 50sylbird 260 . . . . . 6 ((𝐴 No 𝑦 ∈ On) → (¬ dom 𝐴𝑦 → (𝐴𝑦) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦)))
5251necon1ad 2942 . . . . 5 ((𝐴 No 𝑦 ∈ On) → ((𝐴𝑦) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) → dom 𝐴𝑦))
5352ralrimiva 3125 . . . 4 (𝐴 No → ∀𝑦 ∈ On ((𝐴𝑦) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) → dom 𝐴𝑦))
54 fveq2 6858 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
55 fveq2 6858 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦))
5654, 55neeq12d 2986 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥) ↔ (𝐴𝑦) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦)))
5756ralrab 3665 . . . 4 (∀𝑦 ∈ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)}dom 𝐴𝑦 ↔ ∀𝑦 ∈ On ((𝐴𝑦) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) → dom 𝐴𝑦))
5853, 57sylibr 234 . . 3 (𝐴 No → ∀𝑦 ∈ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)}dom 𝐴𝑦)
59 ssint 4928 . . 3 (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} ↔ ∀𝑦 ∈ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)}dom 𝐴𝑦)
6058, 59sylibr 234 . 2 (𝐴 No → dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)})
6129, 60eqssd 3964 1 (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} = dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589  {cpr 4591  cop 4595   cint 4910  dom cdm 5638  Ord word 6331  Oncon0 6332  Fun wfun 6505   Fn wfn 6506  cfv 6511  1oc1o 8427  2oc2o 8428   No csur 27551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-1o 8434  df-2o 8435  df-no 27554
This theorem is referenced by:  noextendlt  27581  noextendgt  27582
  Copyright terms: Public domain W3C validator