Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noextenddif Structured version   Visualization version   GIF version

Theorem noextenddif 33871
Description: Calculate the place where a surreal and its extension differ. (Contributed by Scott Fenton, 22-Nov-2021.)
Hypothesis
Ref Expression
noextend.1 𝑋 ∈ {1o, 2o}
Assertion
Ref Expression
noextenddif (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} = dom 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋

Proof of Theorem noextenddif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nodmon 33853 . . 3 (𝐴 No → dom 𝐴 ∈ On)
2 noextend.1 . . . . . 6 𝑋 ∈ {1o, 2o}
32nosgnn0i 33862 . . . . 5 ∅ ≠ 𝑋
43a1i 11 . . . 4 (𝐴 No → ∅ ≠ 𝑋)
5 nodmord 33856 . . . . . 6 (𝐴 No → Ord dom 𝐴)
6 ordirr 6284 . . . . . 6 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
75, 6syl 17 . . . . 5 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
8 ndmfv 6804 . . . . 5 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
97, 8syl 17 . . . 4 (𝐴 No → (𝐴‘dom 𝐴) = ∅)
10 nofun 33852 . . . . . . 7 (𝐴 No → Fun 𝐴)
11 funfn 6464 . . . . . . 7 (Fun 𝐴𝐴 Fn dom 𝐴)
1210, 11sylib 217 . . . . . 6 (𝐴 No 𝐴 Fn dom 𝐴)
13 fnsng 6486 . . . . . . 7 ((dom 𝐴 ∈ On ∧ 𝑋 ∈ {1o, 2o}) → {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴})
141, 2, 13sylancl 586 . . . . . 6 (𝐴 No → {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴})
15 disjsn 4647 . . . . . . 7 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
167, 15sylibr 233 . . . . . 6 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
17 snidg 4595 . . . . . . 7 (dom 𝐴 ∈ On → dom 𝐴 ∈ {dom 𝐴})
181, 17syl 17 . . . . . 6 (𝐴 No → dom 𝐴 ∈ {dom 𝐴})
19 fvun2 6860 . . . . . 6 ((𝐴 Fn dom 𝐴 ∧ {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ dom 𝐴 ∈ {dom 𝐴})) → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴) = ({⟨dom 𝐴, 𝑋⟩}‘dom 𝐴))
2012, 14, 16, 18, 19syl112anc 1373 . . . . 5 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴) = ({⟨dom 𝐴, 𝑋⟩}‘dom 𝐴))
21 fvsng 7052 . . . . . 6 ((dom 𝐴 ∈ On ∧ 𝑋 ∈ {1o, 2o}) → ({⟨dom 𝐴, 𝑋⟩}‘dom 𝐴) = 𝑋)
221, 2, 21sylancl 586 . . . . 5 (𝐴 No → ({⟨dom 𝐴, 𝑋⟩}‘dom 𝐴) = 𝑋)
2320, 22eqtrd 2778 . . . 4 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴) = 𝑋)
244, 9, 233netr4d 3021 . . 3 (𝐴 No → (𝐴‘dom 𝐴) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴))
25 fveq2 6774 . . . . 5 (𝑥 = dom 𝐴 → (𝐴𝑥) = (𝐴‘dom 𝐴))
26 fveq2 6774 . . . . 5 (𝑥 = dom 𝐴 → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴))
2725, 26neeq12d 3005 . . . 4 (𝑥 = dom 𝐴 → ((𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥) ↔ (𝐴‘dom 𝐴) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴)))
2827onintss 6316 . . 3 (dom 𝐴 ∈ On → ((𝐴‘dom 𝐴) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} ⊆ dom 𝐴))
291, 24, 28sylc 65 . 2 (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} ⊆ dom 𝐴)
30 eloni 6276 . . . . . . . 8 (𝑦 ∈ On → Ord 𝑦)
31 ordtri2 6301 . . . . . . . . . 10 ((Ord 𝑦 ∧ Ord dom 𝐴) → (𝑦 ∈ dom 𝐴 ↔ ¬ (𝑦 = dom 𝐴 ∨ dom 𝐴𝑦)))
32 eqcom 2745 . . . . . . . . . . . . 13 (𝑦 = dom 𝐴 ↔ dom 𝐴 = 𝑦)
3332orbi1i 911 . . . . . . . . . . . 12 ((𝑦 = dom 𝐴 ∨ dom 𝐴𝑦) ↔ (dom 𝐴 = 𝑦 ∨ dom 𝐴𝑦))
34 orcom 867 . . . . . . . . . . . 12 ((dom 𝐴 = 𝑦 ∨ dom 𝐴𝑦) ↔ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦))
3533, 34bitri 274 . . . . . . . . . . 11 ((𝑦 = dom 𝐴 ∨ dom 𝐴𝑦) ↔ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦))
3635notbii 320 . . . . . . . . . 10 (¬ (𝑦 = dom 𝐴 ∨ dom 𝐴𝑦) ↔ ¬ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦))
3731, 36bitrdi 287 . . . . . . . . 9 ((Ord 𝑦 ∧ Ord dom 𝐴) → (𝑦 ∈ dom 𝐴 ↔ ¬ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦)))
38 ordsseleq 6295 . . . . . . . . . . 11 ((Ord dom 𝐴 ∧ Ord 𝑦) → (dom 𝐴𝑦 ↔ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦)))
3938notbid 318 . . . . . . . . . 10 ((Ord dom 𝐴 ∧ Ord 𝑦) → (¬ dom 𝐴𝑦 ↔ ¬ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦)))
4039ancoms 459 . . . . . . . . 9 ((Ord 𝑦 ∧ Ord dom 𝐴) → (¬ dom 𝐴𝑦 ↔ ¬ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦)))
4137, 40bitr4d 281 . . . . . . . 8 ((Ord 𝑦 ∧ Ord dom 𝐴) → (𝑦 ∈ dom 𝐴 ↔ ¬ dom 𝐴𝑦))
4230, 5, 41syl2anr 597 . . . . . . 7 ((𝐴 No 𝑦 ∈ On) → (𝑦 ∈ dom 𝐴 ↔ ¬ dom 𝐴𝑦))
43123ad2ant1 1132 . . . . . . . . . 10 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → 𝐴 Fn dom 𝐴)
44143ad2ant1 1132 . . . . . . . . . 10 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴})
45163ad2ant1 1132 . . . . . . . . . 10 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
46 simp3 1137 . . . . . . . . . 10 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → 𝑦 ∈ dom 𝐴)
47 fvun1 6859 . . . . . . . . . 10 ((𝐴 Fn dom 𝐴 ∧ {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ 𝑦 ∈ dom 𝐴)) → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) = (𝐴𝑦))
4843, 44, 45, 46, 47syl112anc 1373 . . . . . . . . 9 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) = (𝐴𝑦))
4948eqcomd 2744 . . . . . . . 8 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → (𝐴𝑦) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦))
50493expia 1120 . . . . . . 7 ((𝐴 No 𝑦 ∈ On) → (𝑦 ∈ dom 𝐴 → (𝐴𝑦) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦)))
5142, 50sylbird 259 . . . . . 6 ((𝐴 No 𝑦 ∈ On) → (¬ dom 𝐴𝑦 → (𝐴𝑦) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦)))
5251necon1ad 2960 . . . . 5 ((𝐴 No 𝑦 ∈ On) → ((𝐴𝑦) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) → dom 𝐴𝑦))
5352ralrimiva 3103 . . . 4 (𝐴 No → ∀𝑦 ∈ On ((𝐴𝑦) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) → dom 𝐴𝑦))
54 fveq2 6774 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
55 fveq2 6774 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦))
5654, 55neeq12d 3005 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥) ↔ (𝐴𝑦) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦)))
5756ralrab 3630 . . . 4 (∀𝑦 ∈ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)}dom 𝐴𝑦 ↔ ∀𝑦 ∈ On ((𝐴𝑦) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) → dom 𝐴𝑦))
5853, 57sylibr 233 . . 3 (𝐴 No → ∀𝑦 ∈ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)}dom 𝐴𝑦)
59 ssint 4895 . . 3 (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} ↔ ∀𝑦 ∈ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)}dom 𝐴𝑦)
6058, 59sylibr 233 . 2 (𝐴 No → dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)})
6129, 60eqssd 3938 1 (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} = dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561  {cpr 4563  cop 4567   cint 4879  dom cdm 5589  Ord word 6265  Oncon0 6266  Fun wfun 6427   Fn wfn 6428  cfv 6433  1oc1o 8290  2oc2o 8291   No csur 33843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-1o 8297  df-2o 8298  df-no 33846
This theorem is referenced by:  noextendlt  33872  noextendgt  33873
  Copyright terms: Public domain W3C validator