Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankval3b Structured version   Visualization version   GIF version

Theorem rankval3b 9301
 Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankval3b (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem rankval3b
StepHypRef Expression
1 rankon 9270 . . . . . . . . . 10 (rank‘𝐴) ∈ On
2 simprl 770 . . . . . . . . . 10 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → 𝑥 ∈ On)
3 ontri1 6208 . . . . . . . . . 10 (((rank‘𝐴) ∈ On ∧ 𝑥 ∈ On) → ((rank‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝐴)))
41, 2, 3sylancr 590 . . . . . . . . 9 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → ((rank‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝐴)))
54con2bid 358 . . . . . . . 8 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → (𝑥 ∈ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ⊆ 𝑥))
6 r1elssi 9280 . . . . . . . . . . . . . . . . . 18 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
76adantr 484 . . . . . . . . . . . . . . . . 17 ((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝐴 (𝑅1 “ On))
87sselda 3894 . . . . . . . . . . . . . . . 16 (((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ 𝑦𝐴) → 𝑦 (𝑅1 “ On))
9 rankdmr1 9276 . . . . . . . . . . . . . . . . . 18 (rank‘𝐴) ∈ dom 𝑅1
10 r1funlim 9241 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1110simpri 489 . . . . . . . . . . . . . . . . . . 19 Lim dom 𝑅1
12 limord 6233 . . . . . . . . . . . . . . . . . . 19 (Lim dom 𝑅1 → Ord dom 𝑅1)
13 ordtr1 6217 . . . . . . . . . . . . . . . . . . 19 (Ord dom 𝑅1 → ((𝑥 ∈ (rank‘𝐴) ∧ (rank‘𝐴) ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
1411, 12, 13mp2b 10 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (rank‘𝐴) ∧ (rank‘𝐴) ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
159, 14mpan2 690 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (rank‘𝐴) → 𝑥 ∈ dom 𝑅1)
1615ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ 𝑦𝐴) → 𝑥 ∈ dom 𝑅1)
17 rankr1ag 9277 . . . . . . . . . . . . . . . 16 ((𝑦 (𝑅1 “ On) ∧ 𝑥 ∈ dom 𝑅1) → (𝑦 ∈ (𝑅1𝑥) ↔ (rank‘𝑦) ∈ 𝑥))
188, 16, 17syl2anc 587 . . . . . . . . . . . . . . 15 (((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ 𝑦𝐴) → (𝑦 ∈ (𝑅1𝑥) ↔ (rank‘𝑦) ∈ 𝑥))
1918ralbidva 3125 . . . . . . . . . . . . . 14 ((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) → (∀𝑦𝐴 𝑦 ∈ (𝑅1𝑥) ↔ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥))
2019biimpar 481 . . . . . . . . . . . . 13 (((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → ∀𝑦𝐴 𝑦 ∈ (𝑅1𝑥))
2120an32s 651 . . . . . . . . . . . 12 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → ∀𝑦𝐴 𝑦 ∈ (𝑅1𝑥))
22 dfss3 3882 . . . . . . . . . . . 12 (𝐴 ⊆ (𝑅1𝑥) ↔ ∀𝑦𝐴 𝑦 ∈ (𝑅1𝑥))
2321, 22sylibr 237 . . . . . . . . . . 11 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝐴 ⊆ (𝑅1𝑥))
24 simpll 766 . . . . . . . . . . . 12 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝐴 (𝑅1 “ On))
2515adantl 485 . . . . . . . . . . . 12 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝑥 ∈ dom 𝑅1)
26 rankr1bg 9278 . . . . . . . . . . . 12 ((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1𝑥) ↔ (rank‘𝐴) ⊆ 𝑥))
2724, 25, 26syl2anc 587 . . . . . . . . . . 11 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → (𝐴 ⊆ (𝑅1𝑥) ↔ (rank‘𝐴) ⊆ 𝑥))
2823, 27mpbid 235 . . . . . . . . . 10 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → (rank‘𝐴) ⊆ 𝑥)
2928ex 416 . . . . . . . . 9 ((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → (𝑥 ∈ (rank‘𝐴) → (rank‘𝐴) ⊆ 𝑥))
3029adantrl 715 . . . . . . . 8 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → (𝑥 ∈ (rank‘𝐴) → (rank‘𝐴) ⊆ 𝑥))
315, 30sylbird 263 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → (¬ (rank‘𝐴) ⊆ 𝑥 → (rank‘𝐴) ⊆ 𝑥))
3231pm2.18d 127 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → (rank‘𝐴) ⊆ 𝑥)
3332ex 416 . . . . 5 (𝐴 (𝑅1 “ On) → ((𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → (rank‘𝐴) ⊆ 𝑥))
3433alrimiv 1928 . . . 4 (𝐴 (𝑅1 “ On) → ∀𝑥((𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → (rank‘𝐴) ⊆ 𝑥))
35 ssintab 4858 . . . 4 ((rank‘𝐴) ⊆ {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)} ↔ ∀𝑥((𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → (rank‘𝐴) ⊆ 𝑥))
3634, 35sylibr 237 . . 3 (𝐴 (𝑅1 “ On) → (rank‘𝐴) ⊆ {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)})
37 df-rab 3079 . . . 4 {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥} = {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)}
3837inteqi 4845 . . 3 {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥} = {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)}
3936, 38sseqtrrdi 3945 . 2 (𝐴 (𝑅1 “ On) → (rank‘𝐴) ⊆ {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥})
40 rankelb 9299 . . . 4 (𝐴 (𝑅1 “ On) → (𝑦𝐴 → (rank‘𝑦) ∈ (rank‘𝐴)))
4140ralrimiv 3112 . . 3 (𝐴 (𝑅1 “ On) → ∀𝑦𝐴 (rank‘𝑦) ∈ (rank‘𝐴))
42 eleq2 2840 . . . . 5 (𝑥 = (rank‘𝐴) → ((rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝑦) ∈ (rank‘𝐴)))
4342ralbidv 3126 . . . 4 (𝑥 = (rank‘𝐴) → (∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥 ↔ ∀𝑦𝐴 (rank‘𝑦) ∈ (rank‘𝐴)))
4443onintss 6224 . . 3 ((rank‘𝐴) ∈ On → (∀𝑦𝐴 (rank‘𝑦) ∈ (rank‘𝐴) → {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥} ⊆ (rank‘𝐴)))
451, 41, 44mpsyl 68 . 2 (𝐴 (𝑅1 “ On) → {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥} ⊆ (rank‘𝐴))
4639, 45eqssd 3911 1 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536   = wceq 1538   ∈ wcel 2111  {cab 2735  ∀wral 3070  {crab 3074   ⊆ wss 3860  ∪ cuni 4801  ∩ cint 4841  dom cdm 5528   “ cima 5531  Ord word 6173  Oncon0 6174  Lim wlim 6175  Fun wfun 6334  ‘cfv 6340  𝑅1cr1 9237  rankcrnk 9238 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-om 7586  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-r1 9239  df-rank 9240 This theorem is referenced by:  ranksnb  9302  rankonidlem  9303  rankval3  9315  rankunb  9325  rankuni2b  9328  tcrank  9359
 Copyright terms: Public domain W3C validator