MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankval3b Structured version   Visualization version   GIF version

Theorem rankval3b 9047
Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankval3b (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem rankval3b
StepHypRef Expression
1 rankon 9016 . . . . . . . . . 10 (rank‘𝐴) ∈ On
2 simprl 758 . . . . . . . . . 10 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → 𝑥 ∈ On)
3 ontri1 6060 . . . . . . . . . 10 (((rank‘𝐴) ∈ On ∧ 𝑥 ∈ On) → ((rank‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝐴)))
41, 2, 3sylancr 578 . . . . . . . . 9 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → ((rank‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝐴)))
54con2bid 347 . . . . . . . 8 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → (𝑥 ∈ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ⊆ 𝑥))
6 r1elssi 9026 . . . . . . . . . . . . . . . . . 18 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
76adantr 473 . . . . . . . . . . . . . . . . 17 ((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝐴 (𝑅1 “ On))
87sselda 3852 . . . . . . . . . . . . . . . 16 (((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ 𝑦𝐴) → 𝑦 (𝑅1 “ On))
9 rankdmr1 9022 . . . . . . . . . . . . . . . . . 18 (rank‘𝐴) ∈ dom 𝑅1
10 r1funlim 8987 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1110simpri 478 . . . . . . . . . . . . . . . . . . 19 Lim dom 𝑅1
12 limord 6085 . . . . . . . . . . . . . . . . . . 19 (Lim dom 𝑅1 → Ord dom 𝑅1)
13 ordtr1 6069 . . . . . . . . . . . . . . . . . . 19 (Ord dom 𝑅1 → ((𝑥 ∈ (rank‘𝐴) ∧ (rank‘𝐴) ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
1411, 12, 13mp2b 10 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (rank‘𝐴) ∧ (rank‘𝐴) ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
159, 14mpan2 678 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (rank‘𝐴) → 𝑥 ∈ dom 𝑅1)
1615ad2antlr 714 . . . . . . . . . . . . . . . 16 (((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ 𝑦𝐴) → 𝑥 ∈ dom 𝑅1)
17 rankr1ag 9023 . . . . . . . . . . . . . . . 16 ((𝑦 (𝑅1 “ On) ∧ 𝑥 ∈ dom 𝑅1) → (𝑦 ∈ (𝑅1𝑥) ↔ (rank‘𝑦) ∈ 𝑥))
188, 16, 17syl2anc 576 . . . . . . . . . . . . . . 15 (((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ 𝑦𝐴) → (𝑦 ∈ (𝑅1𝑥) ↔ (rank‘𝑦) ∈ 𝑥))
1918ralbidva 3140 . . . . . . . . . . . . . 14 ((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) → (∀𝑦𝐴 𝑦 ∈ (𝑅1𝑥) ↔ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥))
2019biimpar 470 . . . . . . . . . . . . 13 (((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → ∀𝑦𝐴 𝑦 ∈ (𝑅1𝑥))
2120an32s 639 . . . . . . . . . . . 12 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → ∀𝑦𝐴 𝑦 ∈ (𝑅1𝑥))
22 dfss3 3841 . . . . . . . . . . . 12 (𝐴 ⊆ (𝑅1𝑥) ↔ ∀𝑦𝐴 𝑦 ∈ (𝑅1𝑥))
2321, 22sylibr 226 . . . . . . . . . . 11 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝐴 ⊆ (𝑅1𝑥))
24 simpll 754 . . . . . . . . . . . 12 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝐴 (𝑅1 “ On))
2515adantl 474 . . . . . . . . . . . 12 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝑥 ∈ dom 𝑅1)
26 rankr1bg 9024 . . . . . . . . . . . 12 ((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1𝑥) ↔ (rank‘𝐴) ⊆ 𝑥))
2724, 25, 26syl2anc 576 . . . . . . . . . . 11 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → (𝐴 ⊆ (𝑅1𝑥) ↔ (rank‘𝐴) ⊆ 𝑥))
2823, 27mpbid 224 . . . . . . . . . 10 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → (rank‘𝐴) ⊆ 𝑥)
2928ex 405 . . . . . . . . 9 ((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → (𝑥 ∈ (rank‘𝐴) → (rank‘𝐴) ⊆ 𝑥))
3029adantrl 703 . . . . . . . 8 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → (𝑥 ∈ (rank‘𝐴) → (rank‘𝐴) ⊆ 𝑥))
315, 30sylbird 252 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → (¬ (rank‘𝐴) ⊆ 𝑥 → (rank‘𝐴) ⊆ 𝑥))
3231pm2.18d 127 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → (rank‘𝐴) ⊆ 𝑥)
3332ex 405 . . . . 5 (𝐴 (𝑅1 “ On) → ((𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → (rank‘𝐴) ⊆ 𝑥))
3433alrimiv 1886 . . . 4 (𝐴 (𝑅1 “ On) → ∀𝑥((𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → (rank‘𝐴) ⊆ 𝑥))
35 ssintab 4762 . . . 4 ((rank‘𝐴) ⊆ {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)} ↔ ∀𝑥((𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → (rank‘𝐴) ⊆ 𝑥))
3634, 35sylibr 226 . . 3 (𝐴 (𝑅1 “ On) → (rank‘𝐴) ⊆ {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)})
37 df-rab 3091 . . . 4 {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥} = {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)}
3837inteqi 4749 . . 3 {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥} = {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)}
3936, 38syl6sseqr 3902 . 2 (𝐴 (𝑅1 “ On) → (rank‘𝐴) ⊆ {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥})
40 rankelb 9045 . . . 4 (𝐴 (𝑅1 “ On) → (𝑦𝐴 → (rank‘𝑦) ∈ (rank‘𝐴)))
4140ralrimiv 3125 . . 3 (𝐴 (𝑅1 “ On) → ∀𝑦𝐴 (rank‘𝑦) ∈ (rank‘𝐴))
42 eleq2 2848 . . . . 5 (𝑥 = (rank‘𝐴) → ((rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝑦) ∈ (rank‘𝐴)))
4342ralbidv 3141 . . . 4 (𝑥 = (rank‘𝐴) → (∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥 ↔ ∀𝑦𝐴 (rank‘𝑦) ∈ (rank‘𝐴)))
4443onintss 6076 . . 3 ((rank‘𝐴) ∈ On → (∀𝑦𝐴 (rank‘𝑦) ∈ (rank‘𝐴) → {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥} ⊆ (rank‘𝐴)))
451, 41, 44mpsyl 68 . 2 (𝐴 (𝑅1 “ On) → {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥} ⊆ (rank‘𝐴))
4639, 45eqssd 3869 1 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wal 1505   = wceq 1507  wcel 2050  {cab 2752  wral 3082  {crab 3086  wss 3823   cuni 4708   cint 4745  dom cdm 5403  cima 5406  Ord word 6025  Oncon0 6026  Lim wlim 6027  Fun wfun 6179  cfv 6185  𝑅1cr1 8983  rankcrnk 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-om 7395  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-r1 8985  df-rank 8986
This theorem is referenced by:  ranksnb  9048  rankonidlem  9049  rankval3  9061  rankunb  9071  rankuni2b  9074  tcrank  9105
  Copyright terms: Public domain W3C validator