MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankval3b Structured version   Visualization version   GIF version

Theorem rankval3b 9895
Description: The value of the rank function expressed recursively: the rank of a set is the smallest ordinal number containing the ranks of all members of the set. Proposition 9.17 of [TakeutiZaring] p. 79. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankval3b (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥})
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem rankval3b
StepHypRef Expression
1 rankon 9864 . . . . . . . . . 10 (rank‘𝐴) ∈ On
2 simprl 770 . . . . . . . . . 10 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → 𝑥 ∈ On)
3 ontri1 6429 . . . . . . . . . 10 (((rank‘𝐴) ∈ On ∧ 𝑥 ∈ On) → ((rank‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝐴)))
41, 2, 3sylancr 586 . . . . . . . . 9 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → ((rank‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝐴)))
54con2bid 354 . . . . . . . 8 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → (𝑥 ∈ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ⊆ 𝑥))
6 r1elssi 9874 . . . . . . . . . . . . . . . . . 18 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
76adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝐴 (𝑅1 “ On))
87sselda 4008 . . . . . . . . . . . . . . . 16 (((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ 𝑦𝐴) → 𝑦 (𝑅1 “ On))
9 rankdmr1 9870 . . . . . . . . . . . . . . . . . 18 (rank‘𝐴) ∈ dom 𝑅1
10 r1funlim 9835 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1110simpri 485 . . . . . . . . . . . . . . . . . . 19 Lim dom 𝑅1
12 limord 6455 . . . . . . . . . . . . . . . . . . 19 (Lim dom 𝑅1 → Ord dom 𝑅1)
13 ordtr1 6438 . . . . . . . . . . . . . . . . . . 19 (Ord dom 𝑅1 → ((𝑥 ∈ (rank‘𝐴) ∧ (rank‘𝐴) ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
1411, 12, 13mp2b 10 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (rank‘𝐴) ∧ (rank‘𝐴) ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
159, 14mpan2 690 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (rank‘𝐴) → 𝑥 ∈ dom 𝑅1)
1615ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ 𝑦𝐴) → 𝑥 ∈ dom 𝑅1)
17 rankr1ag 9871 . . . . . . . . . . . . . . . 16 ((𝑦 (𝑅1 “ On) ∧ 𝑥 ∈ dom 𝑅1) → (𝑦 ∈ (𝑅1𝑥) ↔ (rank‘𝑦) ∈ 𝑥))
188, 16, 17syl2anc 583 . . . . . . . . . . . . . . 15 (((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ 𝑦𝐴) → (𝑦 ∈ (𝑅1𝑥) ↔ (rank‘𝑦) ∈ 𝑥))
1918ralbidva 3182 . . . . . . . . . . . . . 14 ((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) → (∀𝑦𝐴 𝑦 ∈ (𝑅1𝑥) ↔ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥))
2019biimpar 477 . . . . . . . . . . . . 13 (((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → ∀𝑦𝐴 𝑦 ∈ (𝑅1𝑥))
2120an32s 651 . . . . . . . . . . . 12 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → ∀𝑦𝐴 𝑦 ∈ (𝑅1𝑥))
22 dfss3 3997 . . . . . . . . . . . 12 (𝐴 ⊆ (𝑅1𝑥) ↔ ∀𝑦𝐴 𝑦 ∈ (𝑅1𝑥))
2321, 22sylibr 234 . . . . . . . . . . 11 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝐴 ⊆ (𝑅1𝑥))
24 simpll 766 . . . . . . . . . . . 12 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝐴 (𝑅1 “ On))
2515adantl 481 . . . . . . . . . . . 12 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝑥 ∈ dom 𝑅1)
26 rankr1bg 9872 . . . . . . . . . . . 12 ((𝐴 (𝑅1 “ On) ∧ 𝑥 ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1𝑥) ↔ (rank‘𝐴) ⊆ 𝑥))
2724, 25, 26syl2anc 583 . . . . . . . . . . 11 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → (𝐴 ⊆ (𝑅1𝑥) ↔ (rank‘𝐴) ⊆ 𝑥))
2823, 27mpbid 232 . . . . . . . . . 10 (((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → (rank‘𝐴) ⊆ 𝑥)
2928ex 412 . . . . . . . . 9 ((𝐴 (𝑅1 “ On) ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → (𝑥 ∈ (rank‘𝐴) → (rank‘𝐴) ⊆ 𝑥))
3029adantrl 715 . . . . . . . 8 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → (𝑥 ∈ (rank‘𝐴) → (rank‘𝐴) ⊆ 𝑥))
315, 30sylbird 260 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → (¬ (rank‘𝐴) ⊆ 𝑥 → (rank‘𝐴) ⊆ 𝑥))
3231pm2.18d 127 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)) → (rank‘𝐴) ⊆ 𝑥)
3332ex 412 . . . . 5 (𝐴 (𝑅1 “ On) → ((𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → (rank‘𝐴) ⊆ 𝑥))
3433alrimiv 1926 . . . 4 (𝐴 (𝑅1 “ On) → ∀𝑥((𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → (rank‘𝐴) ⊆ 𝑥))
35 ssintab 4989 . . . 4 ((rank‘𝐴) ⊆ {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)} ↔ ∀𝑥((𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥) → (rank‘𝐴) ⊆ 𝑥))
3634, 35sylibr 234 . . 3 (𝐴 (𝑅1 “ On) → (rank‘𝐴) ⊆ {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)})
37 df-rab 3444 . . . 4 {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥} = {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)}
3837inteqi 4974 . . 3 {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥} = {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥)}
3936, 38sseqtrrdi 4060 . 2 (𝐴 (𝑅1 “ On) → (rank‘𝐴) ⊆ {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥})
40 rankelb 9893 . . . 4 (𝐴 (𝑅1 “ On) → (𝑦𝐴 → (rank‘𝑦) ∈ (rank‘𝐴)))
4140ralrimiv 3151 . . 3 (𝐴 (𝑅1 “ On) → ∀𝑦𝐴 (rank‘𝑦) ∈ (rank‘𝐴))
42 eleq2 2833 . . . . 5 (𝑥 = (rank‘𝐴) → ((rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝑦) ∈ (rank‘𝐴)))
4342ralbidv 3184 . . . 4 (𝑥 = (rank‘𝐴) → (∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥 ↔ ∀𝑦𝐴 (rank‘𝑦) ∈ (rank‘𝐴)))
4443onintss 6446 . . 3 ((rank‘𝐴) ∈ On → (∀𝑦𝐴 (rank‘𝑦) ∈ (rank‘𝐴) → {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥} ⊆ (rank‘𝐴)))
451, 41, 44mpsyl 68 . 2 (𝐴 (𝑅1 “ On) → {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥} ⊆ (rank‘𝐴))
4639, 45eqssd 4026 1 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ ∀𝑦𝐴 (rank‘𝑦) ∈ 𝑥})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2108  {cab 2717  wral 3067  {crab 3443  wss 3976   cuni 4931   cint 4970  dom cdm 5700  cima 5703  Ord word 6394  Oncon0 6395  Lim wlim 6396  Fun wfun 6567  cfv 6573  𝑅1cr1 9831  rankcrnk 9832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-r1 9833  df-rank 9834
This theorem is referenced by:  ranksnb  9896  rankonidlem  9897  rankval3  9909  rankunb  9919  rankuni2b  9922  tcrank  9953
  Copyright terms: Public domain W3C validator