Proof of Theorem rankval3b
Step | Hyp | Ref
| Expression |
1 | | rankon 9581 |
. . . . . . . . . 10
⊢
(rank‘𝐴)
∈ On |
2 | | simprl 767 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥)) → 𝑥 ∈ On) |
3 | | ontri1 6304 |
. . . . . . . . . 10
⊢
(((rank‘𝐴)
∈ On ∧ 𝑥 ∈
On) → ((rank‘𝐴)
⊆ 𝑥 ↔ ¬
𝑥 ∈ (rank‘𝐴))) |
4 | 1, 2, 3 | sylancr 586 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥)) → ((rank‘𝐴) ⊆ 𝑥 ↔ ¬ 𝑥 ∈ (rank‘𝐴))) |
5 | 4 | con2bid 354 |
. . . . . . . 8
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥)) → (𝑥 ∈ (rank‘𝐴) ↔ ¬ (rank‘𝐴) ⊆ 𝑥)) |
6 | | r1elssi 9591 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
7 | 6 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝐴 ⊆ ∪
(𝑅1 “ On)) |
8 | 7 | sselda 3923 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ∪
(𝑅1 “ On)) |
9 | | rankdmr1 9587 |
. . . . . . . . . . . . . . . . . 18
⊢
(rank‘𝐴)
∈ dom 𝑅1 |
10 | | r1funlim 9552 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Fun
𝑅1 ∧ Lim dom 𝑅1) |
11 | 10 | simpri 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ Lim dom
𝑅1 |
12 | | limord 6329 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Lim dom
𝑅1 → Ord dom 𝑅1) |
13 | | ordtr1 6313 |
. . . . . . . . . . . . . . . . . . 19
⊢ (Ord dom
𝑅1 → ((𝑥 ∈ (rank‘𝐴) ∧ (rank‘𝐴) ∈ dom 𝑅1) →
𝑥 ∈ dom
𝑅1)) |
14 | 11, 12, 13 | mp2b 10 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ (rank‘𝐴) ∧ (rank‘𝐴) ∈ dom
𝑅1) → 𝑥 ∈ dom
𝑅1) |
15 | 9, 14 | mpan2 687 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (rank‘𝐴) → 𝑥 ∈ dom
𝑅1) |
16 | 15 | ad2antlr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ dom
𝑅1) |
17 | | rankr1ag 9588 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ∪ (𝑅1 “ On) ∧ 𝑥 ∈ dom
𝑅1) → (𝑦 ∈ (𝑅1‘𝑥) ↔ (rank‘𝑦) ∈ 𝑥)) |
18 | 8, 16, 17 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ 𝑦 ∈ 𝐴) → (𝑦 ∈ (𝑅1‘𝑥) ↔ (rank‘𝑦) ∈ 𝑥)) |
19 | 18 | ralbidva 3166 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) → (∀𝑦 ∈ 𝐴 𝑦 ∈ (𝑅1‘𝑥) ↔ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥)) |
20 | 19 | biimpar 477 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝑥 ∈ (rank‘𝐴)) ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥) → ∀𝑦 ∈ 𝐴 𝑦 ∈ (𝑅1‘𝑥)) |
21 | 20 | an32s 648 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → ∀𝑦 ∈ 𝐴 𝑦 ∈ (𝑅1‘𝑥)) |
22 | | dfss3 3911 |
. . . . . . . . . . . 12
⊢ (𝐴 ⊆
(𝑅1‘𝑥) ↔ ∀𝑦 ∈ 𝐴 𝑦 ∈ (𝑅1‘𝑥)) |
23 | 21, 22 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝐴 ⊆ (𝑅1‘𝑥)) |
24 | | simpll 763 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝐴 ∈ ∪
(𝑅1 “ On)) |
25 | 15 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → 𝑥 ∈ dom
𝑅1) |
26 | | rankr1bg 9589 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝑥 ∈ dom
𝑅1) → (𝐴 ⊆ (𝑅1‘𝑥) ↔ (rank‘𝐴) ⊆ 𝑥)) |
27 | 24, 25, 26 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → (𝐴 ⊆ (𝑅1‘𝑥) ↔ (rank‘𝐴) ⊆ 𝑥)) |
28 | 23, 27 | mpbid 231 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥) ∧ 𝑥 ∈ (rank‘𝐴)) → (rank‘𝐴) ⊆ 𝑥) |
29 | 28 | ex 412 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥) → (𝑥 ∈ (rank‘𝐴) → (rank‘𝐴) ⊆ 𝑥)) |
30 | 29 | adantrl 712 |
. . . . . . . 8
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥)) → (𝑥 ∈ (rank‘𝐴) → (rank‘𝐴) ⊆ 𝑥)) |
31 | 5, 30 | sylbird 259 |
. . . . . . 7
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥)) → (¬ (rank‘𝐴) ⊆ 𝑥 → (rank‘𝐴) ⊆ 𝑥)) |
32 | 31 | pm2.18d 127 |
. . . . . 6
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥)) → (rank‘𝐴) ⊆ 𝑥) |
33 | 32 | ex 412 |
. . . . 5
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ((𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥) → (rank‘𝐴) ⊆ 𝑥)) |
34 | 33 | alrimiv 1926 |
. . . 4
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∀𝑥((𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥) → (rank‘𝐴) ⊆ 𝑥)) |
35 | | ssintab 4899 |
. . . 4
⊢
((rank‘𝐴)
⊆ ∩ {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥)} ↔ ∀𝑥((𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥) → (rank‘𝐴) ⊆ 𝑥)) |
36 | 34, 35 | sylibr 233 |
. . 3
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘𝐴) ⊆
∩ {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥)}) |
37 | | df-rab 3224 |
. . . 4
⊢ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥} = {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥)} |
38 | 37 | inteqi 4886 |
. . 3
⊢ ∩ {𝑥
∈ On ∣ ∀𝑦
∈ 𝐴 (rank‘𝑦) ∈ 𝑥} = ∩ {𝑥 ∣ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥)} |
39 | 36, 38 | sseqtrrdi 3974 |
. 2
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘𝐴) ⊆
∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥}) |
40 | | rankelb 9610 |
. . . 4
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝑦 ∈ 𝐴 → (rank‘𝑦) ∈ (rank‘𝐴))) |
41 | 40 | ralrimiv 3136 |
. . 3
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ (rank‘𝐴)) |
42 | | eleq2 2822 |
. . . . 5
⊢ (𝑥 = (rank‘𝐴) → ((rank‘𝑦) ∈ 𝑥 ↔ (rank‘𝑦) ∈ (rank‘𝐴))) |
43 | 42 | ralbidv 3168 |
. . . 4
⊢ (𝑥 = (rank‘𝐴) → (∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝐴 (rank‘𝑦) ∈ (rank‘𝐴))) |
44 | 43 | onintss 6320 |
. . 3
⊢
((rank‘𝐴)
∈ On → (∀𝑦
∈ 𝐴 (rank‘𝑦) ∈ (rank‘𝐴) → ∩ {𝑥
∈ On ∣ ∀𝑦
∈ 𝐴 (rank‘𝑦) ∈ 𝑥} ⊆ (rank‘𝐴))) |
45 | 1, 41, 44 | mpsyl 68 |
. 2
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∩ {𝑥
∈ On ∣ ∀𝑦
∈ 𝐴 (rank‘𝑦) ∈ 𝑥} ⊆ (rank‘𝐴)) |
46 | 39, 45 | eqssd 3940 |
1
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘𝐴) = ∩ {𝑥
∈ On ∣ ∀𝑦
∈ 𝐴 (rank‘𝑦) ∈ 𝑥}) |