Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordintdif | Structured version Visualization version GIF version |
Description: If 𝐵 is smaller than 𝐴, then it equals the intersection of the difference. Exercise 11 in [TakeutiZaring] p. 44. (Contributed by Andrew Salmon, 14-Nov-2011.) |
Ref | Expression |
---|---|
ordintdif | ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → 𝐵 = ∩ (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdif0 4294 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) | |
2 | 1 | necon3bbii 2990 | . 2 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) ≠ ∅) |
3 | dfdif2 3892 | . . . 4 ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} | |
4 | 3 | inteqi 4880 | . . 3 ⊢ ∩ (𝐴 ∖ 𝐵) = ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} |
5 | ordtri1 6284 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
6 | 5 | con2bid 354 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 ↔ ¬ 𝐴 ⊆ 𝐵)) |
7 | id 22 | . . . . . . . . . . 11 ⊢ (Ord 𝐵 → Ord 𝐵) | |
8 | ordelord 6273 | . . . . . . . . . . 11 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) | |
9 | ordtri1 6284 | . . . . . . . . . . 11 ⊢ ((Ord 𝐵 ∧ Ord 𝑥) → (𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵)) | |
10 | 7, 8, 9 | syl2anr 596 | . . . . . . . . . 10 ⊢ (((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ Ord 𝐵) → (𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵)) |
11 | 10 | an32s 648 | . . . . . . . . 9 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵)) |
12 | 11 | rabbidva 3402 | . . . . . . . 8 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥} = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵}) |
13 | 12 | inteqd 4881 | . . . . . . 7 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ∩ {𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥} = ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵}) |
14 | intmin 4896 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐴 → ∩ {𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥} = 𝐵) | |
15 | 13, 14 | sylan9req 2800 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐵 ∈ 𝐴) → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵) |
16 | 15 | ex 412 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵)) |
17 | 6, 16 | sylbird 259 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐴 ⊆ 𝐵 → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵)) |
18 | 17 | 3impia 1115 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴 ⊆ 𝐵) → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵) |
19 | 4, 18 | eqtr2id 2792 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 = ∩ (𝐴 ∖ 𝐵)) |
20 | 2, 19 | syl3an3br 1406 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → 𝐵 = ∩ (𝐴 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 ∖ cdif 3880 ⊆ wss 3883 ∅c0 4253 ∩ cint 4876 Ord word 6250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |