MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordintdif Structured version   Visualization version   GIF version

Theorem ordintdif 6436
Description: If 𝐵 is smaller than 𝐴, then it equals the intersection of the difference. Exercise 11 in [TakeutiZaring] p. 44. (Contributed by Andrew Salmon, 14-Nov-2011.)
Assertion
Ref Expression
ordintdif ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴𝐵) ≠ ∅) → 𝐵 = (𝐴𝐵))

Proof of Theorem ordintdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssdif0 4372 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
21necon3bbii 2986 . 2 𝐴𝐵 ↔ (𝐴𝐵) ≠ ∅)
3 dfdif2 3972 . . . 4 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
43inteqi 4955 . . 3 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
5 ordtri1 6419 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
65con2bid 354 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
7 id 22 . . . . . . . . . . 11 (Ord 𝐵 → Ord 𝐵)
8 ordelord 6408 . . . . . . . . . . 11 ((Ord 𝐴𝑥𝐴) → Ord 𝑥)
9 ordtri1 6419 . . . . . . . . . . 11 ((Ord 𝐵 ∧ Ord 𝑥) → (𝐵𝑥 ↔ ¬ 𝑥𝐵))
107, 8, 9syl2anr 597 . . . . . . . . . 10 (((Ord 𝐴𝑥𝐴) ∧ Ord 𝐵) → (𝐵𝑥 ↔ ¬ 𝑥𝐵))
1110an32s 652 . . . . . . . . 9 (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥𝐴) → (𝐵𝑥 ↔ ¬ 𝑥𝐵))
1211rabbidva 3440 . . . . . . . 8 ((Ord 𝐴 ∧ Ord 𝐵) → {𝑥𝐴𝐵𝑥} = {𝑥𝐴 ∣ ¬ 𝑥𝐵})
1312inteqd 4956 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → {𝑥𝐴𝐵𝑥} = {𝑥𝐴 ∣ ¬ 𝑥𝐵})
14 intmin 4973 . . . . . . 7 (𝐵𝐴 {𝑥𝐴𝐵𝑥} = 𝐵)
1513, 14sylan9req 2796 . . . . . 6 (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐵𝐴) → {𝑥𝐴 ∣ ¬ 𝑥𝐵} = 𝐵)
1615ex 412 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴 {𝑥𝐴 ∣ ¬ 𝑥𝐵} = 𝐵))
176, 16sylbird 260 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐴𝐵 {𝑥𝐴 ∣ ¬ 𝑥𝐵} = 𝐵))
18173impia 1116 . . 3 ((Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴𝐵) → {𝑥𝐴 ∣ ¬ 𝑥𝐵} = 𝐵)
194, 18eqtr2id 2788 . 2 ((Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴𝐵) → 𝐵 = (𝐴𝐵))
202, 19syl3an3br 1407 1 ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴𝐵) ≠ ∅) → 𝐵 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  {crab 3433  cdif 3960  wss 3963  c0 4339   cint 4951  Ord word 6385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator