| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordintdif | Structured version Visualization version GIF version | ||
| Description: If 𝐵 is smaller than 𝐴, then it equals the intersection of the difference. Exercise 11 in [TakeutiZaring] p. 44. (Contributed by Andrew Salmon, 14-Nov-2011.) |
| Ref | Expression |
|---|---|
| ordintdif | ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → 𝐵 = ∩ (𝐴 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdif0 4346 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) | |
| 2 | 1 | necon3bbii 2980 | . 2 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) ≠ ∅) |
| 3 | dfdif2 3940 | . . . 4 ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} | |
| 4 | 3 | inteqi 4931 | . . 3 ⊢ ∩ (𝐴 ∖ 𝐵) = ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} |
| 5 | ordtri1 6390 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
| 6 | 5 | con2bid 354 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 ↔ ¬ 𝐴 ⊆ 𝐵)) |
| 7 | id 22 | . . . . . . . . . . 11 ⊢ (Ord 𝐵 → Ord 𝐵) | |
| 8 | ordelord 6379 | . . . . . . . . . . 11 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) | |
| 9 | ordtri1 6390 | . . . . . . . . . . 11 ⊢ ((Ord 𝐵 ∧ Ord 𝑥) → (𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵)) | |
| 10 | 7, 8, 9 | syl2anr 597 | . . . . . . . . . 10 ⊢ (((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ Ord 𝐵) → (𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵)) |
| 11 | 10 | an32s 652 | . . . . . . . . 9 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵)) |
| 12 | 11 | rabbidva 3427 | . . . . . . . 8 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥} = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵}) |
| 13 | 12 | inteqd 4932 | . . . . . . 7 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ∩ {𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥} = ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵}) |
| 14 | intmin 4949 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐴 → ∩ {𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥} = 𝐵) | |
| 15 | 13, 14 | sylan9req 2792 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐵 ∈ 𝐴) → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵) |
| 16 | 15 | ex 412 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵)) |
| 17 | 6, 16 | sylbird 260 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐴 ⊆ 𝐵 → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵)) |
| 18 | 17 | 3impia 1117 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴 ⊆ 𝐵) → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵) |
| 19 | 4, 18 | eqtr2id 2784 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 = ∩ (𝐴 ∖ 𝐵)) |
| 20 | 2, 19 | syl3an3br 1410 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → 𝐵 = ∩ (𝐴 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 {crab 3420 ∖ cdif 3928 ⊆ wss 3931 ∅c0 4313 ∩ cint 4927 Ord word 6356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |