MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordintdif Structured version   Visualization version   GIF version

Theorem ordintdif 6300
Description: If 𝐵 is smaller than 𝐴, then it equals the intersection of the difference. Exercise 11 in [TakeutiZaring] p. 44. (Contributed by Andrew Salmon, 14-Nov-2011.)
Assertion
Ref Expression
ordintdif ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴𝐵) ≠ ∅) → 𝐵 = (𝐴𝐵))

Proof of Theorem ordintdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssdif0 4294 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
21necon3bbii 2990 . 2 𝐴𝐵 ↔ (𝐴𝐵) ≠ ∅)
3 dfdif2 3892 . . . 4 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
43inteqi 4880 . . 3 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
5 ordtri1 6284 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
65con2bid 354 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
7 id 22 . . . . . . . . . . 11 (Ord 𝐵 → Ord 𝐵)
8 ordelord 6273 . . . . . . . . . . 11 ((Ord 𝐴𝑥𝐴) → Ord 𝑥)
9 ordtri1 6284 . . . . . . . . . . 11 ((Ord 𝐵 ∧ Ord 𝑥) → (𝐵𝑥 ↔ ¬ 𝑥𝐵))
107, 8, 9syl2anr 596 . . . . . . . . . 10 (((Ord 𝐴𝑥𝐴) ∧ Ord 𝐵) → (𝐵𝑥 ↔ ¬ 𝑥𝐵))
1110an32s 648 . . . . . . . . 9 (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥𝐴) → (𝐵𝑥 ↔ ¬ 𝑥𝐵))
1211rabbidva 3402 . . . . . . . 8 ((Ord 𝐴 ∧ Ord 𝐵) → {𝑥𝐴𝐵𝑥} = {𝑥𝐴 ∣ ¬ 𝑥𝐵})
1312inteqd 4881 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → {𝑥𝐴𝐵𝑥} = {𝑥𝐴 ∣ ¬ 𝑥𝐵})
14 intmin 4896 . . . . . . 7 (𝐵𝐴 {𝑥𝐴𝐵𝑥} = 𝐵)
1513, 14sylan9req 2800 . . . . . 6 (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐵𝐴) → {𝑥𝐴 ∣ ¬ 𝑥𝐵} = 𝐵)
1615ex 412 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴 {𝑥𝐴 ∣ ¬ 𝑥𝐵} = 𝐵))
176, 16sylbird 259 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐴𝐵 {𝑥𝐴 ∣ ¬ 𝑥𝐵} = 𝐵))
18173impia 1115 . . 3 ((Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴𝐵) → {𝑥𝐴 ∣ ¬ 𝑥𝐵} = 𝐵)
194, 18eqtr2id 2792 . 2 ((Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴𝐵) → 𝐵 = (𝐴𝐵))
202, 19syl3an3br 1406 1 ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴𝐵) ≠ ∅) → 𝐵 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  {crab 3067  cdif 3880  wss 3883  c0 4253   cint 4876  Ord word 6250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator