![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordintdif | Structured version Visualization version GIF version |
Description: If 𝐵 is smaller than 𝐴, then it equals the intersection of the difference. Exercise 11 in [TakeutiZaring] p. 44. (Contributed by Andrew Salmon, 14-Nov-2011.) |
Ref | Expression |
---|---|
ordintdif | ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → 𝐵 = ∩ (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdif0 4363 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) | |
2 | 1 | necon3bbii 2987 | . 2 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) ≠ ∅) |
3 | dfdif2 3957 | . . . 4 ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} | |
4 | 3 | inteqi 4954 | . . 3 ⊢ ∩ (𝐴 ∖ 𝐵) = ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} |
5 | ordtri1 6397 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
6 | 5 | con2bid 354 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 ↔ ¬ 𝐴 ⊆ 𝐵)) |
7 | id 22 | . . . . . . . . . . 11 ⊢ (Ord 𝐵 → Ord 𝐵) | |
8 | ordelord 6386 | . . . . . . . . . . 11 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) | |
9 | ordtri1 6397 | . . . . . . . . . . 11 ⊢ ((Ord 𝐵 ∧ Ord 𝑥) → (𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵)) | |
10 | 7, 8, 9 | syl2anr 596 | . . . . . . . . . 10 ⊢ (((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ Ord 𝐵) → (𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵)) |
11 | 10 | an32s 649 | . . . . . . . . 9 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵)) |
12 | 11 | rabbidva 3438 | . . . . . . . 8 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥} = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵}) |
13 | 12 | inteqd 4955 | . . . . . . 7 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ∩ {𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥} = ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵}) |
14 | intmin 4972 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐴 → ∩ {𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥} = 𝐵) | |
15 | 13, 14 | sylan9req 2792 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐵 ∈ 𝐴) → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵) |
16 | 15 | ex 412 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵)) |
17 | 6, 16 | sylbird 260 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐴 ⊆ 𝐵 → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵)) |
18 | 17 | 3impia 1116 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴 ⊆ 𝐵) → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵) |
19 | 4, 18 | eqtr2id 2784 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 = ∩ (𝐴 ∖ 𝐵)) |
20 | 2, 19 | syl3an3br 1407 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → 𝐵 = ∩ (𝐴 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 {crab 3431 ∖ cdif 3945 ⊆ wss 3948 ∅c0 4322 ∩ cint 4950 Ord word 6363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |