MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordintdif Structured version   Visualization version   GIF version

Theorem ordintdif 6315
Description: If 𝐵 is smaller than 𝐴, then it equals the intersection of the difference. Exercise 11 in [TakeutiZaring] p. 44. (Contributed by Andrew Salmon, 14-Nov-2011.)
Assertion
Ref Expression
ordintdif ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴𝐵) ≠ ∅) → 𝐵 = (𝐴𝐵))

Proof of Theorem ordintdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssdif0 4297 . . 3 (𝐴𝐵 ↔ (𝐴𝐵) = ∅)
21necon3bbii 2991 . 2 𝐴𝐵 ↔ (𝐴𝐵) ≠ ∅)
3 dfdif2 3896 . . . 4 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
43inteqi 4883 . . 3 (𝐴𝐵) = {𝑥𝐴 ∣ ¬ 𝑥𝐵}
5 ordtri1 6299 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
65con2bid 355 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴 ↔ ¬ 𝐴𝐵))
7 id 22 . . . . . . . . . . 11 (Ord 𝐵 → Ord 𝐵)
8 ordelord 6288 . . . . . . . . . . 11 ((Ord 𝐴𝑥𝐴) → Ord 𝑥)
9 ordtri1 6299 . . . . . . . . . . 11 ((Ord 𝐵 ∧ Ord 𝑥) → (𝐵𝑥 ↔ ¬ 𝑥𝐵))
107, 8, 9syl2anr 597 . . . . . . . . . 10 (((Ord 𝐴𝑥𝐴) ∧ Ord 𝐵) → (𝐵𝑥 ↔ ¬ 𝑥𝐵))
1110an32s 649 . . . . . . . . 9 (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥𝐴) → (𝐵𝑥 ↔ ¬ 𝑥𝐵))
1211rabbidva 3413 . . . . . . . 8 ((Ord 𝐴 ∧ Ord 𝐵) → {𝑥𝐴𝐵𝑥} = {𝑥𝐴 ∣ ¬ 𝑥𝐵})
1312inteqd 4884 . . . . . . 7 ((Ord 𝐴 ∧ Ord 𝐵) → {𝑥𝐴𝐵𝑥} = {𝑥𝐴 ∣ ¬ 𝑥𝐵})
14 intmin 4899 . . . . . . 7 (𝐵𝐴 {𝑥𝐴𝐵𝑥} = 𝐵)
1513, 14sylan9req 2799 . . . . . 6 (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐵𝐴) → {𝑥𝐴 ∣ ¬ 𝑥𝐵} = 𝐵)
1615ex 413 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴 {𝑥𝐴 ∣ ¬ 𝑥𝐵} = 𝐵))
176, 16sylbird 259 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐴𝐵 {𝑥𝐴 ∣ ¬ 𝑥𝐵} = 𝐵))
18173impia 1116 . . 3 ((Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴𝐵) → {𝑥𝐴 ∣ ¬ 𝑥𝐵} = 𝐵)
194, 18eqtr2id 2791 . 2 ((Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴𝐵) → 𝐵 = (𝐴𝐵))
202, 19syl3an3br 1407 1 ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴𝐵) ≠ ∅) → 𝐵 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  {crab 3068  cdif 3884  wss 3887  c0 4256   cint 4879  Ord word 6265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator