![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordintdif | Structured version Visualization version GIF version |
Description: If 𝐵 is smaller than 𝐴, then it equals the intersection of the difference. Exercise 11 in [TakeutiZaring] p. 44. (Contributed by Andrew Salmon, 14-Nov-2011.) |
Ref | Expression |
---|---|
ordintdif | ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → 𝐵 = ∩ (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdif0 4366 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) = ∅) | |
2 | 1 | necon3bbii 2978 | . 2 ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∖ 𝐵) ≠ ∅) |
3 | dfdif2 3956 | . . . 4 ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} | |
4 | 3 | inteqi 4960 | . . 3 ⊢ ∩ (𝐴 ∖ 𝐵) = ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} |
5 | ordtri1 6411 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) | |
6 | 5 | con2bid 353 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 ↔ ¬ 𝐴 ⊆ 𝐵)) |
7 | id 22 | . . . . . . . . . . 11 ⊢ (Ord 𝐵 → Ord 𝐵) | |
8 | ordelord 6400 | . . . . . . . . . . 11 ⊢ ((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) → Ord 𝑥) | |
9 | ordtri1 6411 | . . . . . . . . . . 11 ⊢ ((Ord 𝐵 ∧ Ord 𝑥) → (𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵)) | |
10 | 7, 8, 9 | syl2anr 595 | . . . . . . . . . 10 ⊢ (((Ord 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ Ord 𝐵) → (𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵)) |
11 | 10 | an32s 650 | . . . . . . . . 9 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐵 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐵)) |
12 | 11 | rabbidva 3426 | . . . . . . . 8 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥} = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵}) |
13 | 12 | inteqd 4961 | . . . . . . 7 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ∩ {𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥} = ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵}) |
14 | intmin 4978 | . . . . . . 7 ⊢ (𝐵 ∈ 𝐴 → ∩ {𝑥 ∈ 𝐴 ∣ 𝐵 ⊆ 𝑥} = 𝐵) | |
15 | 13, 14 | sylan9req 2787 | . . . . . 6 ⊢ (((Ord 𝐴 ∧ Ord 𝐵) ∧ 𝐵 ∈ 𝐴) → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵) |
16 | 15 | ex 411 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵)) |
17 | 6, 16 | sylbird 259 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐴 ⊆ 𝐵 → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵)) |
18 | 17 | 3impia 1114 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴 ⊆ 𝐵) → ∩ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐵} = 𝐵) |
19 | 4, 18 | eqtr2id 2779 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ ¬ 𝐴 ⊆ 𝐵) → 𝐵 = ∩ (𝐴 ∖ 𝐵)) |
20 | 2, 19 | syl3an3br 1405 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → 𝐵 = ∩ (𝐴 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 {crab 3419 ∖ cdif 3944 ⊆ wss 3947 ∅c0 4325 ∩ cint 4956 Ord word 6377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pr 5435 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-int 4957 df-br 5156 df-opab 5218 df-tr 5273 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-ord 6381 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |