![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intminss | Structured version Visualization version GIF version |
Description: Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013.) |
Ref | Expression |
---|---|
intminss.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
intminss | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intminss.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 3643 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
3 | intss1 4922 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} → ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐴) | |
4 | 2, 3 | sylbir 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {crab 3405 ⊆ wss 3908 ∩ cint 4905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3406 df-v 3445 df-in 3915 df-ss 3925 df-int 4906 |
This theorem is referenced by: onintss 6366 knatar 7298 dfttrcl2 9618 cardonle 9851 coftr 10167 wuncss 10639 ist1-3 22652 sigagenss 32560 ldgenpisyslem1 32574 dynkin 32578 fneint 34758 igenmin 36461 pclclN 38292 dfrcl2 41857 |
Copyright terms: Public domain | W3C validator |