MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intminss Structured version   Visualization version   GIF version

Theorem intminss 4979
Description: Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013.)
Hypothesis
Ref Expression
intminss.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
intminss ((𝐴𝐵𝜓) → {𝑥𝐵𝜑} ⊆ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem intminss
StepHypRef Expression
1 intminss.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21elrab 3695 . 2 (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))
3 intss1 4968 . 2 (𝐴 ∈ {𝑥𝐵𝜑} → {𝑥𝐵𝜑} ⊆ 𝐴)
42, 3sylbir 235 1 ((𝐴𝐵𝜓) → {𝑥𝐵𝜑} ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {crab 3433  wss 3963   cint 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-ss 3980  df-int 4952
This theorem is referenced by:  onintss  6437  knatar  7377  dfttrcl2  9762  cardonle  9995  coftr  10311  wuncss  10783  ist1-3  23373  sigagenss  34130  ldgenpisyslem1  34144  dynkin  34148  fneint  36331  igenmin  38051  pclclN  39874  dfrcl2  43664
  Copyright terms: Public domain W3C validator