Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intminss | Structured version Visualization version GIF version |
Description: Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013.) |
Ref | Expression |
---|---|
intminss.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
intminss | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intminss.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 3617 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
3 | intss1 4891 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} → ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐴) | |
4 | 2, 3 | sylbir 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 ⊆ wss 3883 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-int 4877 |
This theorem is referenced by: onintss 6301 knatar 7208 cardonle 9646 coftr 9960 wuncss 10432 ist1-3 22408 sigagenss 32017 ldgenpisyslem1 32031 dynkin 32035 dfttrcl2 33710 fneint 34464 igenmin 36149 pclclN 37832 dfrcl2 41171 |
Copyright terms: Public domain | W3C validator |