![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intminss | Structured version Visualization version GIF version |
Description: Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013.) |
Ref | Expression |
---|---|
intminss.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
intminss | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intminss.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 3678 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
3 | intss1 4960 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} → ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐴) | |
4 | 2, 3 | sylbir 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {crab 3426 ⊆ wss 3943 ∩ cint 4943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rab 3427 df-v 3470 df-in 3950 df-ss 3960 df-int 4944 |
This theorem is referenced by: onintss 6408 knatar 7349 dfttrcl2 9718 cardonle 9951 coftr 10267 wuncss 10739 ist1-3 23203 sigagenss 33676 ldgenpisyslem1 33690 dynkin 33694 fneint 35740 igenmin 37444 pclclN 39274 dfrcl2 42983 |
Copyright terms: Public domain | W3C validator |