| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intminss | Structured version Visualization version GIF version | ||
| Description: Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013.) |
| Ref | Expression |
|---|---|
| intminss.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| intminss | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intminss.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elrab 3650 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
| 3 | intss1 4916 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} → ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐴) | |
| 4 | 2, 3 | sylbir 235 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∩ {𝑥 ∈ 𝐵 ∣ 𝜑} ⊆ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 ⊆ wss 3905 ∩ cint 4899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-ss 3922 df-int 4900 |
| This theorem is referenced by: onintss 6363 knatar 7298 dfttrcl2 9639 cardonle 9872 coftr 10186 wuncss 10658 ist1-3 23252 sigagenss 34115 ldgenpisyslem1 34129 dynkin 34133 tz9.1regs 35066 fneint 36321 igenmin 38043 pclclN 39870 dfrcl2 43647 |
| Copyright terms: Public domain | W3C validator |