MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intminss Structured version   Visualization version   GIF version

Theorem intminss 4867
Description: Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013.)
Hypothesis
Ref Expression
intminss.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
intminss ((𝐴𝐵𝜓) → {𝑥𝐵𝜑} ⊆ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem intminss
StepHypRef Expression
1 intminss.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
21elrab 3631 . 2 (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))
3 intss1 4856 . 2 (𝐴 ∈ {𝑥𝐵𝜑} → {𝑥𝐵𝜑} ⊆ 𝐴)
42, 3sylbir 238 1 ((𝐴𝐵𝜓) → {𝑥𝐵𝜑} ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  {crab 3113  wss 3884   cint 4841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-rab 3118  df-v 3446  df-in 3891  df-ss 3901  df-int 4842
This theorem is referenced by:  onintss  6213  knatar  7093  cardonle  9374  coftr  9688  wuncss  10160  ist1-3  21958  sigagenss  31522  ldgenpisyslem1  31536  dynkin  31540  fneint  33810  igenmin  35501  pclclN  37186  dfrcl2  40368
  Copyright terms: Public domain W3C validator