MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneqmini Structured version   Visualization version   GIF version

Theorem oneqmini 6210
Description: A way to show that an ordinal number equals the minimum of a collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.)
Assertion
Ref Expression
oneqmini (𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem oneqmini
StepHypRef Expression
1 ssint 4854 . . . . . 6 (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
2 ssel 3908 . . . . . . . . . . . 12 (𝐵 ⊆ On → (𝐴𝐵𝐴 ∈ On))
3 ssel 3908 . . . . . . . . . . . 12 (𝐵 ⊆ On → (𝑥𝐵𝑥 ∈ On))
42, 3anim12d 611 . . . . . . . . . . 11 (𝐵 ⊆ On → ((𝐴𝐵𝑥𝐵) → (𝐴 ∈ On ∧ 𝑥 ∈ On)))
5 ontri1 6193 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
64, 5syl6 35 . . . . . . . . . 10 (𝐵 ⊆ On → ((𝐴𝐵𝑥𝐵) → (𝐴𝑥 ↔ ¬ 𝑥𝐴)))
76expdimp 456 . . . . . . . . 9 ((𝐵 ⊆ On ∧ 𝐴𝐵) → (𝑥𝐵 → (𝐴𝑥 ↔ ¬ 𝑥𝐴)))
87pm5.74d 276 . . . . . . . 8 ((𝐵 ⊆ On ∧ 𝐴𝐵) → ((𝑥𝐵𝐴𝑥) ↔ (𝑥𝐵 → ¬ 𝑥𝐴)))
9 con2b 363 . . . . . . . 8 ((𝑥𝐵 → ¬ 𝑥𝐴) ↔ (𝑥𝐴 → ¬ 𝑥𝐵))
108, 9syl6bb 290 . . . . . . 7 ((𝐵 ⊆ On ∧ 𝐴𝐵) → ((𝑥𝐵𝐴𝑥) ↔ (𝑥𝐴 → ¬ 𝑥𝐵)))
1110ralbidv2 3160 . . . . . 6 ((𝐵 ⊆ On ∧ 𝐴𝐵) → (∀𝑥𝐵 𝐴𝑥 ↔ ∀𝑥𝐴 ¬ 𝑥𝐵))
121, 11syl5bb 286 . . . . 5 ((𝐵 ⊆ On ∧ 𝐴𝐵) → (𝐴 𝐵 ↔ ∀𝑥𝐴 ¬ 𝑥𝐵))
1312biimprd 251 . . . 4 ((𝐵 ⊆ On ∧ 𝐴𝐵) → (∀𝑥𝐴 ¬ 𝑥𝐵𝐴 𝐵))
1413expimpd 457 . . 3 (𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐴 𝐵))
15 intss1 4853 . . . . 5 (𝐴𝐵 𝐵𝐴)
1615a1i 11 . . . 4 (𝐵 ⊆ On → (𝐴𝐵 𝐵𝐴))
1716adantrd 495 . . 3 (𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐵𝐴))
1814, 17jcad 516 . 2 (𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → (𝐴 𝐵 𝐵𝐴)))
19 eqss 3930 . 2 (𝐴 = 𝐵 ↔ (𝐴 𝐵 𝐵𝐴))
2018, 19syl6ibr 255 1 (𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wss 3881   cint 4838  Oncon0 6159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-tr 5137  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-ord 6162  df-on 6163
This theorem is referenced by:  oneqmin  7500  alephval3  9521  cfsuc  9668  alephval2  9983
  Copyright terms: Public domain W3C validator