Proof of Theorem oneqmini
Step | Hyp | Ref
| Expression |
1 | | ssint 4900 |
. . . . . 6
⊢ (𝐴 ⊆ ∩ 𝐵
↔ ∀𝑥 ∈
𝐵 𝐴 ⊆ 𝑥) |
2 | | ssel 3918 |
. . . . . . . . . . . 12
⊢ (𝐵 ⊆ On → (𝐴 ∈ 𝐵 → 𝐴 ∈ On)) |
3 | | ssel 3918 |
. . . . . . . . . . . 12
⊢ (𝐵 ⊆ On → (𝑥 ∈ 𝐵 → 𝑥 ∈ On)) |
4 | 2, 3 | anim12d 608 |
. . . . . . . . . . 11
⊢ (𝐵 ⊆ On → ((𝐴 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝐴 ∈ On ∧ 𝑥 ∈ On))) |
5 | | ontri1 6297 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴)) |
6 | 4, 5 | syl6 35 |
. . . . . . . . . 10
⊢ (𝐵 ⊆ On → ((𝐴 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴))) |
7 | 6 | expdimp 452 |
. . . . . . . . 9
⊢ ((𝐵 ⊆ On ∧ 𝐴 ∈ 𝐵) → (𝑥 ∈ 𝐵 → (𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴))) |
8 | 7 | pm5.74d 272 |
. . . . . . . 8
⊢ ((𝐵 ⊆ On ∧ 𝐴 ∈ 𝐵) → ((𝑥 ∈ 𝐵 → 𝐴 ⊆ 𝑥) ↔ (𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴))) |
9 | | con2b 359 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
10 | 8, 9 | bitrdi 286 |
. . . . . . 7
⊢ ((𝐵 ⊆ On ∧ 𝐴 ∈ 𝐵) → ((𝑥 ∈ 𝐵 → 𝐴 ⊆ 𝑥) ↔ (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵))) |
11 | 10 | ralbidv2 3120 |
. . . . . 6
⊢ ((𝐵 ⊆ On ∧ 𝐴 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵)) |
12 | 1, 11 | syl5bb 282 |
. . . . 5
⊢ ((𝐵 ⊆ On ∧ 𝐴 ∈ 𝐵) → (𝐴 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵)) |
13 | 12 | biimprd 247 |
. . . 4
⊢ ((𝐵 ⊆ On ∧ 𝐴 ∈ 𝐵) → (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 → 𝐴 ⊆ ∩ 𝐵)) |
14 | 13 | expimpd 453 |
. . 3
⊢ (𝐵 ⊆ On → ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) → 𝐴 ⊆ ∩ 𝐵)) |
15 | | intss1 4899 |
. . . . 5
⊢ (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴) |
16 | 15 | a1i 11 |
. . . 4
⊢ (𝐵 ⊆ On → (𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴)) |
17 | 16 | adantrd 491 |
. . 3
⊢ (𝐵 ⊆ On → ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) → ∩ 𝐵 ⊆ 𝐴)) |
18 | 14, 17 | jcad 512 |
. 2
⊢ (𝐵 ⊆ On → ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) → (𝐴 ⊆ ∩ 𝐵 ∧ ∩ 𝐵
⊆ 𝐴))) |
19 | | eqss 3940 |
. 2
⊢ (𝐴 = ∩
𝐵 ↔ (𝐴 ⊆ ∩ 𝐵 ∧ ∩ 𝐵
⊆ 𝐴)) |
20 | 18, 19 | syl6ibr 251 |
1
⊢ (𝐵 ⊆ On → ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) → 𝐴 = ∩ 𝐵)) |