MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardne Structured version   Visualization version   GIF version

Theorem cardne 9378
Description: No member of a cardinal number of a set is equinumerous to the set. Proposition 10.6(2) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 9-Jan-2013.)
Assertion
Ref Expression
cardne (𝐴 ∈ (card‘𝐵) → ¬ 𝐴𝐵)

Proof of Theorem cardne
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6677 . 2 (𝐴 ∈ (card‘𝐵) → 𝐵 ∈ dom card)
2 cardon 9357 . . . . . . . . . 10 (card‘𝐵) ∈ On
32oneli 6266 . . . . . . . . 9 (𝐴 ∈ (card‘𝐵) → 𝐴 ∈ On)
4 breq1 5033 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
54onintss 6209 . . . . . . . . 9 (𝐴 ∈ On → (𝐴𝐵 {𝑥 ∈ On ∣ 𝑥𝐵} ⊆ 𝐴))
63, 5syl 17 . . . . . . . 8 (𝐴 ∈ (card‘𝐵) → (𝐴𝐵 {𝑥 ∈ On ∣ 𝑥𝐵} ⊆ 𝐴))
76adantl 485 . . . . . . 7 ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴𝐵 {𝑥 ∈ On ∣ 𝑥𝐵} ⊆ 𝐴))
8 cardval3 9365 . . . . . . . . 9 (𝐵 ∈ dom card → (card‘𝐵) = {𝑥 ∈ On ∣ 𝑥𝐵})
98sseq1d 3946 . . . . . . . 8 (𝐵 ∈ dom card → ((card‘𝐵) ⊆ 𝐴 {𝑥 ∈ On ∣ 𝑥𝐵} ⊆ 𝐴))
109adantr 484 . . . . . . 7 ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → ((card‘𝐵) ⊆ 𝐴 {𝑥 ∈ On ∣ 𝑥𝐵} ⊆ 𝐴))
117, 10sylibrd 262 . . . . . 6 ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴𝐵 → (card‘𝐵) ⊆ 𝐴))
12 ontri1 6193 . . . . . . . 8 (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵)))
132, 3, 12sylancr 590 . . . . . . 7 (𝐴 ∈ (card‘𝐵) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵)))
1413adantl 485 . . . . . 6 ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵)))
1511, 14sylibd 242 . . . . 5 ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴𝐵 → ¬ 𝐴 ∈ (card‘𝐵)))
1615con2d 136 . . . 4 ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴𝐵))
1716ex 416 . . 3 (𝐵 ∈ dom card → (𝐴 ∈ (card‘𝐵) → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴𝐵)))
1817pm2.43d 53 . 2 (𝐵 ∈ dom card → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴𝐵))
191, 18mpcom 38 1 (𝐴 ∈ (card‘𝐵) → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wcel 2111  {crab 3110  wss 3881   cint 4838   class class class wbr 5030  dom cdm 5519  Oncon0 6159  cfv 6324  cen 8489  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-en 8493  df-card 9352
This theorem is referenced by:  carden2b  9380  cardlim  9385  cardsdomelir  9386
  Copyright terms: Public domain W3C validator