![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardne | Structured version Visualization version GIF version |
Description: No member of a cardinal number of a set is equinumerous to the set. Proposition 10.6(2) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 9-Jan-2013.) |
Ref | Expression |
---|---|
cardne | ⊢ (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6957 | . 2 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐵 ∈ dom card) | |
2 | cardon 10013 | . . . . . . . . . 10 ⊢ (card‘𝐵) ∈ On | |
3 | 2 | oneli 6509 | . . . . . . . . 9 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ∈ On) |
4 | breq1 5169 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝐵 ↔ 𝐴 ≈ 𝐵)) | |
5 | 4 | onintss 6446 | . . . . . . . . 9 ⊢ (𝐴 ∈ On → (𝐴 ≈ 𝐵 → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
6 | 3, 5 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ (card‘𝐵) → (𝐴 ≈ 𝐵 → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
7 | 6 | adantl 481 | . . . . . . 7 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ≈ 𝐵 → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
8 | cardval3 10021 | . . . . . . . . 9 ⊢ (𝐵 ∈ dom card → (card‘𝐵) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵}) | |
9 | 8 | sseq1d 4040 | . . . . . . . 8 ⊢ (𝐵 ∈ dom card → ((card‘𝐵) ⊆ 𝐴 ↔ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → ((card‘𝐵) ⊆ 𝐴 ↔ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
11 | 7, 10 | sylibrd 259 | . . . . . 6 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ≈ 𝐵 → (card‘𝐵) ⊆ 𝐴)) |
12 | ontri1 6429 | . . . . . . . 8 ⊢ (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵))) | |
13 | 2, 3, 12 | sylancr 586 | . . . . . . 7 ⊢ (𝐴 ∈ (card‘𝐵) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵))) |
14 | 13 | adantl 481 | . . . . . 6 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵))) |
15 | 11, 14 | sylibd 239 | . . . . 5 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ≈ 𝐵 → ¬ 𝐴 ∈ (card‘𝐵))) |
16 | 15 | con2d 134 | . . . 4 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵)) |
17 | 16 | ex 412 | . . 3 ⊢ (𝐵 ∈ dom card → (𝐴 ∈ (card‘𝐵) → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵))) |
18 | 17 | pm2.43d 53 | . 2 ⊢ (𝐵 ∈ dom card → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵)) |
19 | 1, 18 | mpcom 38 | 1 ⊢ (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 {crab 3443 ⊆ wss 3976 ∩ cint 4970 class class class wbr 5166 dom cdm 5700 Oncon0 6395 ‘cfv 6573 ≈ cen 9000 cardccrd 10004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-en 9004 df-card 10008 |
This theorem is referenced by: carden2b 10036 cardlim 10041 cardsdomelir 10042 |
Copyright terms: Public domain | W3C validator |