| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardne | Structured version Visualization version GIF version | ||
| Description: No member of a cardinal number of a set is equinumerous to the set. Proposition 10.6(2) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 9-Jan-2013.) |
| Ref | Expression |
|---|---|
| cardne | ⊢ (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6924 | . 2 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐵 ∈ dom card) | |
| 2 | cardon 9967 | . . . . . . . . . 10 ⊢ (card‘𝐵) ∈ On | |
| 3 | 2 | oneli 6479 | . . . . . . . . 9 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ∈ On) |
| 4 | breq1 5128 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝐵 ↔ 𝐴 ≈ 𝐵)) | |
| 5 | 4 | onintss 6416 | . . . . . . . . 9 ⊢ (𝐴 ∈ On → (𝐴 ≈ 𝐵 → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
| 6 | 3, 5 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ (card‘𝐵) → (𝐴 ≈ 𝐵 → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
| 7 | 6 | adantl 481 | . . . . . . 7 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ≈ 𝐵 → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
| 8 | cardval3 9975 | . . . . . . . . 9 ⊢ (𝐵 ∈ dom card → (card‘𝐵) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵}) | |
| 9 | 8 | sseq1d 3997 | . . . . . . . 8 ⊢ (𝐵 ∈ dom card → ((card‘𝐵) ⊆ 𝐴 ↔ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → ((card‘𝐵) ⊆ 𝐴 ↔ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
| 11 | 7, 10 | sylibrd 259 | . . . . . 6 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ≈ 𝐵 → (card‘𝐵) ⊆ 𝐴)) |
| 12 | ontri1 6399 | . . . . . . . 8 ⊢ (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵))) | |
| 13 | 2, 3, 12 | sylancr 587 | . . . . . . 7 ⊢ (𝐴 ∈ (card‘𝐵) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵))) |
| 14 | 13 | adantl 481 | . . . . . 6 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵))) |
| 15 | 11, 14 | sylibd 239 | . . . . 5 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ≈ 𝐵 → ¬ 𝐴 ∈ (card‘𝐵))) |
| 16 | 15 | con2d 134 | . . . 4 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵)) |
| 17 | 16 | ex 412 | . . 3 ⊢ (𝐵 ∈ dom card → (𝐴 ∈ (card‘𝐵) → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵))) |
| 18 | 17 | pm2.43d 53 | . 2 ⊢ (𝐵 ∈ dom card → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵)) |
| 19 | 1, 18 | mpcom 38 | 1 ⊢ (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 {crab 3420 ⊆ wss 3933 ∩ cint 4928 class class class wbr 5125 dom cdm 5667 Oncon0 6365 ‘cfv 6542 ≈ cen 8965 cardccrd 9958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ord 6368 df-on 6369 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-en 8969 df-card 9962 |
| This theorem is referenced by: carden2b 9990 cardlim 9995 cardsdomelir 9996 |
| Copyright terms: Public domain | W3C validator |