MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardne Structured version   Visualization version   GIF version

Theorem cardne 9077
Description: No member of a cardinal number of a set is equinumerous to the set. Proposition 10.6(2) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 9-Jan-2013.)
Assertion
Ref Expression
cardne (𝐴 ∈ (card‘𝐵) → ¬ 𝐴𝐵)

Proof of Theorem cardne
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6443 . 2 (𝐴 ∈ (card‘𝐵) → 𝐵 ∈ dom card)
2 cardon 9056 . . . . . . . . . 10 (card‘𝐵) ∈ On
32oneli 6048 . . . . . . . . 9 (𝐴 ∈ (card‘𝐵) → 𝐴 ∈ On)
4 breq1 4846 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
54onintss 5991 . . . . . . . . 9 (𝐴 ∈ On → (𝐴𝐵 {𝑥 ∈ On ∣ 𝑥𝐵} ⊆ 𝐴))
63, 5syl 17 . . . . . . . 8 (𝐴 ∈ (card‘𝐵) → (𝐴𝐵 {𝑥 ∈ On ∣ 𝑥𝐵} ⊆ 𝐴))
76adantl 474 . . . . . . 7 ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴𝐵 {𝑥 ∈ On ∣ 𝑥𝐵} ⊆ 𝐴))
8 cardval3 9064 . . . . . . . . 9 (𝐵 ∈ dom card → (card‘𝐵) = {𝑥 ∈ On ∣ 𝑥𝐵})
98sseq1d 3828 . . . . . . . 8 (𝐵 ∈ dom card → ((card‘𝐵) ⊆ 𝐴 {𝑥 ∈ On ∣ 𝑥𝐵} ⊆ 𝐴))
109adantr 473 . . . . . . 7 ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → ((card‘𝐵) ⊆ 𝐴 {𝑥 ∈ On ∣ 𝑥𝐵} ⊆ 𝐴))
117, 10sylibrd 251 . . . . . 6 ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴𝐵 → (card‘𝐵) ⊆ 𝐴))
12 ontri1 5975 . . . . . . . 8 (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵)))
132, 3, 12sylancr 582 . . . . . . 7 (𝐴 ∈ (card‘𝐵) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵)))
1413adantl 474 . . . . . 6 ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵)))
1511, 14sylibd 231 . . . . 5 ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴𝐵 → ¬ 𝐴 ∈ (card‘𝐵)))
1615con2d 132 . . . 4 ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴𝐵))
1716ex 402 . . 3 (𝐵 ∈ dom card → (𝐴 ∈ (card‘𝐵) → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴𝐵)))
1817pm2.43d 53 . 2 (𝐵 ∈ dom card → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴𝐵))
191, 18mpcom 38 1 (𝐴 ∈ (card‘𝐵) → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  wcel 2157  {crab 3093  wss 3769   cint 4667   class class class wbr 4843  dom cdm 5312  Oncon0 5941  cfv 6101  cen 8192  cardccrd 9047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-ord 5944  df-on 5945  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-fv 6109  df-en 8196  df-card 9051
This theorem is referenced by:  carden2b  9079  cardlim  9084  cardsdomelir  9085
  Copyright terms: Public domain W3C validator