| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cardne | Structured version Visualization version GIF version | ||
| Description: No member of a cardinal number of a set is equinumerous to the set. Proposition 10.6(2) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 9-Jan-2013.) |
| Ref | Expression |
|---|---|
| cardne | ⊢ (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6895 | . 2 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐵 ∈ dom card) | |
| 2 | cardon 9897 | . . . . . . . . . 10 ⊢ (card‘𝐵) ∈ On | |
| 3 | 2 | oneli 6448 | . . . . . . . . 9 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ∈ On) |
| 4 | breq1 5110 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝐵 ↔ 𝐴 ≈ 𝐵)) | |
| 5 | 4 | onintss 6384 | . . . . . . . . 9 ⊢ (𝐴 ∈ On → (𝐴 ≈ 𝐵 → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
| 6 | 3, 5 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ (card‘𝐵) → (𝐴 ≈ 𝐵 → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
| 7 | 6 | adantl 481 | . . . . . . 7 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ≈ 𝐵 → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
| 8 | cardval3 9905 | . . . . . . . . 9 ⊢ (𝐵 ∈ dom card → (card‘𝐵) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵}) | |
| 9 | 8 | sseq1d 3978 | . . . . . . . 8 ⊢ (𝐵 ∈ dom card → ((card‘𝐵) ⊆ 𝐴 ↔ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → ((card‘𝐵) ⊆ 𝐴 ↔ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
| 11 | 7, 10 | sylibrd 259 | . . . . . 6 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ≈ 𝐵 → (card‘𝐵) ⊆ 𝐴)) |
| 12 | ontri1 6366 | . . . . . . . 8 ⊢ (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵))) | |
| 13 | 2, 3, 12 | sylancr 587 | . . . . . . 7 ⊢ (𝐴 ∈ (card‘𝐵) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵))) |
| 14 | 13 | adantl 481 | . . . . . 6 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵))) |
| 15 | 11, 14 | sylibd 239 | . . . . 5 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ≈ 𝐵 → ¬ 𝐴 ∈ (card‘𝐵))) |
| 16 | 15 | con2d 134 | . . . 4 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵)) |
| 17 | 16 | ex 412 | . . 3 ⊢ (𝐵 ∈ dom card → (𝐴 ∈ (card‘𝐵) → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵))) |
| 18 | 17 | pm2.43d 53 | . 2 ⊢ (𝐵 ∈ dom card → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵)) |
| 19 | 1, 18 | mpcom 38 | 1 ⊢ (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 {crab 3405 ⊆ wss 3914 ∩ cint 4910 class class class wbr 5107 dom cdm 5638 Oncon0 6332 ‘cfv 6511 ≈ cen 8915 cardccrd 9888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-en 8919 df-card 9892 |
| This theorem is referenced by: carden2b 9920 cardlim 9925 cardsdomelir 9926 |
| Copyright terms: Public domain | W3C validator |