MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardne Structured version   Visualization version   GIF version

Theorem cardne 9382
Description: No member of a cardinal number of a set is equinumerous to the set. Proposition 10.6(2) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 9-Jan-2013.)
Assertion
Ref Expression
cardne (𝐴 ∈ (card‘𝐵) → ¬ 𝐴𝐵)

Proof of Theorem cardne
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6695 . 2 (𝐴 ∈ (card‘𝐵) → 𝐵 ∈ dom card)
2 cardon 9361 . . . . . . . . . 10 (card‘𝐵) ∈ On
32oneli 6291 . . . . . . . . 9 (𝐴 ∈ (card‘𝐵) → 𝐴 ∈ On)
4 breq1 5060 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
54onintss 6234 . . . . . . . . 9 (𝐴 ∈ On → (𝐴𝐵 {𝑥 ∈ On ∣ 𝑥𝐵} ⊆ 𝐴))
63, 5syl 17 . . . . . . . 8 (𝐴 ∈ (card‘𝐵) → (𝐴𝐵 {𝑥 ∈ On ∣ 𝑥𝐵} ⊆ 𝐴))
76adantl 482 . . . . . . 7 ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴𝐵 {𝑥 ∈ On ∣ 𝑥𝐵} ⊆ 𝐴))
8 cardval3 9369 . . . . . . . . 9 (𝐵 ∈ dom card → (card‘𝐵) = {𝑥 ∈ On ∣ 𝑥𝐵})
98sseq1d 3995 . . . . . . . 8 (𝐵 ∈ dom card → ((card‘𝐵) ⊆ 𝐴 {𝑥 ∈ On ∣ 𝑥𝐵} ⊆ 𝐴))
109adantr 481 . . . . . . 7 ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → ((card‘𝐵) ⊆ 𝐴 {𝑥 ∈ On ∣ 𝑥𝐵} ⊆ 𝐴))
117, 10sylibrd 260 . . . . . 6 ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴𝐵 → (card‘𝐵) ⊆ 𝐴))
12 ontri1 6218 . . . . . . . 8 (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵)))
132, 3, 12sylancr 587 . . . . . . 7 (𝐴 ∈ (card‘𝐵) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵)))
1413adantl 482 . . . . . 6 ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵)))
1511, 14sylibd 240 . . . . 5 ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴𝐵 → ¬ 𝐴 ∈ (card‘𝐵)))
1615con2d 136 . . . 4 ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴𝐵))
1716ex 413 . . 3 (𝐵 ∈ dom card → (𝐴 ∈ (card‘𝐵) → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴𝐵)))
1817pm2.43d 53 . 2 (𝐵 ∈ dom card → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴𝐵))
191, 18mpcom 38 1 (𝐴 ∈ (card‘𝐵) → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wcel 2105  {crab 3139  wss 3933   cint 4867   class class class wbr 5057  dom cdm 5548  Oncon0 6184  cfv 6348  cen 8494  cardccrd 9352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-en 8498  df-card 9356
This theorem is referenced by:  carden2b  9384  cardlim  9389  cardsdomelir  9390
  Copyright terms: Public domain W3C validator