![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardne | Structured version Visualization version GIF version |
Description: No member of a cardinal number of a set is equinumerous to the set. Proposition 10.6(2) of [TakeutiZaring] p. 85. (Contributed by Mario Carneiro, 9-Jan-2013.) |
Ref | Expression |
---|---|
cardne | ⊢ (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6443 | . 2 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐵 ∈ dom card) | |
2 | cardon 9056 | . . . . . . . . . 10 ⊢ (card‘𝐵) ∈ On | |
3 | 2 | oneli 6048 | . . . . . . . . 9 ⊢ (𝐴 ∈ (card‘𝐵) → 𝐴 ∈ On) |
4 | breq1 4846 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → (𝑥 ≈ 𝐵 ↔ 𝐴 ≈ 𝐵)) | |
5 | 4 | onintss 5991 | . . . . . . . . 9 ⊢ (𝐴 ∈ On → (𝐴 ≈ 𝐵 → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
6 | 3, 5 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ (card‘𝐵) → (𝐴 ≈ 𝐵 → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
7 | 6 | adantl 474 | . . . . . . 7 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ≈ 𝐵 → ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
8 | cardval3 9064 | . . . . . . . . 9 ⊢ (𝐵 ∈ dom card → (card‘𝐵) = ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵}) | |
9 | 8 | sseq1d 3828 | . . . . . . . 8 ⊢ (𝐵 ∈ dom card → ((card‘𝐵) ⊆ 𝐴 ↔ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
10 | 9 | adantr 473 | . . . . . . 7 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → ((card‘𝐵) ⊆ 𝐴 ↔ ∩ {𝑥 ∈ On ∣ 𝑥 ≈ 𝐵} ⊆ 𝐴)) |
11 | 7, 10 | sylibrd 251 | . . . . . 6 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ≈ 𝐵 → (card‘𝐵) ⊆ 𝐴)) |
12 | ontri1 5975 | . . . . . . . 8 ⊢ (((card‘𝐵) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵))) | |
13 | 2, 3, 12 | sylancr 582 | . . . . . . 7 ⊢ (𝐴 ∈ (card‘𝐵) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵))) |
14 | 13 | adantl 474 | . . . . . 6 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → ((card‘𝐵) ⊆ 𝐴 ↔ ¬ 𝐴 ∈ (card‘𝐵))) |
15 | 11, 14 | sylibd 231 | . . . . 5 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ≈ 𝐵 → ¬ 𝐴 ∈ (card‘𝐵))) |
16 | 15 | con2d 132 | . . . 4 ⊢ ((𝐵 ∈ dom card ∧ 𝐴 ∈ (card‘𝐵)) → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵)) |
17 | 16 | ex 402 | . . 3 ⊢ (𝐵 ∈ dom card → (𝐴 ∈ (card‘𝐵) → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵))) |
18 | 17 | pm2.43d 53 | . 2 ⊢ (𝐵 ∈ dom card → (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵)) |
19 | 1, 18 | mpcom 38 | 1 ⊢ (𝐴 ∈ (card‘𝐵) → ¬ 𝐴 ≈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∈ wcel 2157 {crab 3093 ⊆ wss 3769 ∩ cint 4667 class class class wbr 4843 dom cdm 5312 Oncon0 5941 ‘cfv 6101 ≈ cen 8192 cardccrd 9047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-ord 5944 df-on 5945 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-fv 6109 df-en 8196 df-card 9051 |
This theorem is referenced by: carden2b 9079 cardlim 9084 cardsdomelir 9085 |
Copyright terms: Public domain | W3C validator |