Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsssupeqcond Structured version   Visualization version   GIF version

Theorem onsssupeqcond 43269
Description: If for every element of a set of ordinals there is an element of a subset which is at least as large, then the union of the set and the subset is the same. Lemma 2.12 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
onsssupeqcond ((𝐴 ⊆ On ∧ 𝐴𝑉) → ((𝐵𝐴 ∧ ∀𝑎𝐴𝑏𝐵 𝑎𝑏) → 𝐴 = 𝐵))
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑏)   𝑉(𝑎,𝑏)

Proof of Theorem onsssupeqcond
StepHypRef Expression
1 uniss2 4905 . . . 4 (∀𝑎𝐴𝑏𝐵 𝑎𝑏 𝐴 𝐵)
21adantl 481 . . 3 ((𝐵𝐴 ∧ ∀𝑎𝐴𝑏𝐵 𝑎𝑏) → 𝐴 𝐵)
3 uniss 4879 . . . 4 (𝐵𝐴 𝐵 𝐴)
43adantr 480 . . 3 ((𝐵𝐴 ∧ ∀𝑎𝐴𝑏𝐵 𝑎𝑏) → 𝐵 𝐴)
52, 4eqssd 3964 . 2 ((𝐵𝐴 ∧ ∀𝑎𝐴𝑏𝐵 𝑎𝑏) → 𝐴 = 𝐵)
65a1i 11 1 ((𝐴 ⊆ On ∧ 𝐴𝑉) → ((𝐵𝐴 ∧ ∀𝑎𝐴𝑏𝐵 𝑎𝑏) → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914   cuni 4871  Oncon0 6332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3449  df-ss 3931  df-uni 4872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator