| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsupsucismax | Structured version Visualization version GIF version | ||
| Description: If the union of a set of ordinals is a successor ordinal, then that union is the maximum element of the set. This is not a bijection because sets where the maximum element is zero or a limit ordinal exist. Lemma 2.11 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.) |
| Ref | Expression |
|---|---|
| onsupsucismax | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → (∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏 → ∪ 𝐴 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsupnmax 43331 | . . . 4 ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 = ∪ ∪ 𝐴)) | |
| 2 | ssorduni 7712 | . . . . 5 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
| 3 | orduninsuc 7773 | . . . . 5 ⊢ (Ord ∪ 𝐴 → (∪ 𝐴 = ∪ ∪ 𝐴 ↔ ¬ ∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏)) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ⊆ On → (∪ 𝐴 = ∪ ∪ 𝐴 ↔ ¬ ∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏)) |
| 5 | 1, 4 | sylibd 239 | . . 3 ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 ∈ 𝐴 → ¬ ∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏)) |
| 6 | 5 | con4d 115 | . 2 ⊢ (𝐴 ⊆ On → (∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏 → ∪ 𝐴 ∈ 𝐴)) |
| 7 | 6 | adantr 480 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → (∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏 → ∪ 𝐴 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 ∪ cuni 4856 Ord word 6305 Oncon0 6306 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-suc 6312 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |