| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsupsucismax | Structured version Visualization version GIF version | ||
| Description: If the union of a set of ordinals is a successor ordinal, then that union is the maximum element of the set. This is not a bijection because sets where the maximum element is zero or a limit ordinal exist. Lemma 2.11 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.) |
| Ref | Expression |
|---|---|
| onsupsucismax | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → (∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏 → ∪ 𝐴 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsupnmax 43185 | . . . 4 ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 = ∪ ∪ 𝐴)) | |
| 2 | ssorduni 7782 | . . . . 5 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
| 3 | orduninsuc 7847 | . . . . 5 ⊢ (Ord ∪ 𝐴 → (∪ 𝐴 = ∪ ∪ 𝐴 ↔ ¬ ∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏)) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ⊆ On → (∪ 𝐴 = ∪ ∪ 𝐴 ↔ ¬ ∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏)) |
| 5 | 1, 4 | sylibd 239 | . . 3 ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 ∈ 𝐴 → ¬ ∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏)) |
| 6 | 5 | con4d 115 | . 2 ⊢ (𝐴 ⊆ On → (∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏 → ∪ 𝐴 ∈ 𝐴)) |
| 7 | 6 | adantr 480 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → (∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏 → ∪ 𝐴 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ⊆ wss 3933 ∪ cuni 4889 Ord word 6364 Oncon0 6365 suc csuc 6367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-tr 5242 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-ord 6368 df-on 6369 df-suc 6371 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |