| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsupsucismax | Structured version Visualization version GIF version | ||
| Description: If the union of a set of ordinals is a successor ordinal, then that union is the maximum element of the set. This is not a bijection because sets where the maximum element is zero or a limit ordinal exist. Lemma 2.11 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.) |
| Ref | Expression |
|---|---|
| onsupsucismax | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → (∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏 → ∪ 𝐴 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsupnmax 43227 | . . . 4 ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 = ∪ ∪ 𝐴)) | |
| 2 | ssorduni 7778 | . . . . 5 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
| 3 | orduninsuc 7843 | . . . . 5 ⊢ (Ord ∪ 𝐴 → (∪ 𝐴 = ∪ ∪ 𝐴 ↔ ¬ ∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏)) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ⊆ On → (∪ 𝐴 = ∪ ∪ 𝐴 ↔ ¬ ∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏)) |
| 5 | 1, 4 | sylibd 239 | . . 3 ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 ∈ 𝐴 → ¬ ∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏)) |
| 6 | 5 | con4d 115 | . 2 ⊢ (𝐴 ⊆ On → (∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏 → ∪ 𝐴 ∈ 𝐴)) |
| 7 | 6 | adantr 480 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → (∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏 → ∪ 𝐴 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ⊆ wss 3931 ∪ cuni 4888 Ord word 6356 Oncon0 6357 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-suc 6363 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |