Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupsucismax Structured version   Visualization version   GIF version

Theorem onsupsucismax 43250
Description: If the union of a set of ordinals is a successor ordinal, then that union is the maximum element of the set. This is not a bijection because sets where the maximum element is zero or a limit ordinal exist. Lemma 2.11 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
onsupsucismax ((𝐴 ⊆ On ∧ 𝐴𝑉) → (∃𝑏 ∈ On 𝐴 = suc 𝑏 𝐴𝐴))
Distinct variable group:   𝐴,𝑏
Allowed substitution hint:   𝑉(𝑏)

Proof of Theorem onsupsucismax
StepHypRef Expression
1 onsupnmax 43199 . . . 4 (𝐴 ⊆ On → (¬ 𝐴𝐴 𝐴 = 𝐴))
2 ssorduni 7771 . . . . 5 (𝐴 ⊆ On → Ord 𝐴)
3 orduninsuc 7836 . . . . 5 (Ord 𝐴 → ( 𝐴 = 𝐴 ↔ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
42, 3syl 17 . . . 4 (𝐴 ⊆ On → ( 𝐴 = 𝐴 ↔ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
51, 4sylibd 239 . . 3 (𝐴 ⊆ On → (¬ 𝐴𝐴 → ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
65con4d 115 . 2 (𝐴 ⊆ On → (∃𝑏 ∈ On 𝐴 = suc 𝑏 𝐴𝐴))
76adantr 480 1 ((𝐴 ⊆ On ∧ 𝐴𝑉) → (∃𝑏 ∈ On 𝐴 = suc 𝑏 𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  wss 3926   cuni 4883  Ord word 6351  Oncon0 6352  suc csuc 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356  df-suc 6358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator