Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupsucismax Structured version   Visualization version   GIF version

Theorem onsupsucismax 43269
Description: If the union of a set of ordinals is a successor ordinal, then that union is the maximum element of the set. This is not a bijection because sets where the maximum element is zero or a limit ordinal exist. Lemma 2.11 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
onsupsucismax ((𝐴 ⊆ On ∧ 𝐴𝑉) → (∃𝑏 ∈ On 𝐴 = suc 𝑏 𝐴𝐴))
Distinct variable group:   𝐴,𝑏
Allowed substitution hint:   𝑉(𝑏)

Proof of Theorem onsupsucismax
StepHypRef Expression
1 onsupnmax 43217 . . . 4 (𝐴 ⊆ On → (¬ 𝐴𝐴 𝐴 = 𝐴))
2 ssorduni 7798 . . . . 5 (𝐴 ⊆ On → Ord 𝐴)
3 orduninsuc 7864 . . . . 5 (Ord 𝐴 → ( 𝐴 = 𝐴 ↔ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
42, 3syl 17 . . . 4 (𝐴 ⊆ On → ( 𝐴 = 𝐴 ↔ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
51, 4sylibd 239 . . 3 (𝐴 ⊆ On → (¬ 𝐴𝐴 → ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
65con4d 115 . 2 (𝐴 ⊆ On → (∃𝑏 ∈ On 𝐴 = suc 𝑏 𝐴𝐴))
76adantr 480 1 ((𝐴 ⊆ On ∧ 𝐴𝑉) → (∃𝑏 ∈ On 𝐴 = suc 𝑏 𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wrex 3068  wss 3963   cuni 4912  Ord word 6385  Oncon0 6386  suc csuc 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389  df-on 6390  df-suc 6392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator