Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupsucismax Structured version   Visualization version   GIF version

Theorem onsupsucismax 43278
Description: If the union of a set of ordinals is a successor ordinal, then that union is the maximum element of the set. This is not a bijection because sets where the maximum element is zero or a limit ordinal exist. Lemma 2.11 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
onsupsucismax ((𝐴 ⊆ On ∧ 𝐴𝑉) → (∃𝑏 ∈ On 𝐴 = suc 𝑏 𝐴𝐴))
Distinct variable group:   𝐴,𝑏
Allowed substitution hint:   𝑉(𝑏)

Proof of Theorem onsupsucismax
StepHypRef Expression
1 onsupnmax 43227 . . . 4 (𝐴 ⊆ On → (¬ 𝐴𝐴 𝐴 = 𝐴))
2 ssorduni 7778 . . . . 5 (𝐴 ⊆ On → Ord 𝐴)
3 orduninsuc 7843 . . . . 5 (Ord 𝐴 → ( 𝐴 = 𝐴 ↔ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
42, 3syl 17 . . . 4 (𝐴 ⊆ On → ( 𝐴 = 𝐴 ↔ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
51, 4sylibd 239 . . 3 (𝐴 ⊆ On → (¬ 𝐴𝐴 → ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
65con4d 115 . 2 (𝐴 ⊆ On → (∃𝑏 ∈ On 𝐴 = suc 𝑏 𝐴𝐴))
76adantr 480 1 ((𝐴 ⊆ On ∧ 𝐴𝑉) → (∃𝑏 ∈ On 𝐴 = suc 𝑏 𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3061  wss 3931   cuni 4888  Ord word 6356  Oncon0 6357  suc csuc 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-ord 6360  df-on 6361  df-suc 6363
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator