Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupsucismax Structured version   Visualization version   GIF version

Theorem onsupsucismax 43237
Description: If the union of a set of ordinals is a successor ordinal, then that union is the maximum element of the set. This is not a bijection because sets where the maximum element is zero or a limit ordinal exist. Lemma 2.11 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
onsupsucismax ((𝐴 ⊆ On ∧ 𝐴𝑉) → (∃𝑏 ∈ On 𝐴 = suc 𝑏 𝐴𝐴))
Distinct variable group:   𝐴,𝑏
Allowed substitution hint:   𝑉(𝑏)

Proof of Theorem onsupsucismax
StepHypRef Expression
1 onsupnmax 43185 . . . 4 (𝐴 ⊆ On → (¬ 𝐴𝐴 𝐴 = 𝐴))
2 ssorduni 7782 . . . . 5 (𝐴 ⊆ On → Ord 𝐴)
3 orduninsuc 7847 . . . . 5 (Ord 𝐴 → ( 𝐴 = 𝐴 ↔ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
42, 3syl 17 . . . 4 (𝐴 ⊆ On → ( 𝐴 = 𝐴 ↔ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
51, 4sylibd 239 . . 3 (𝐴 ⊆ On → (¬ 𝐴𝐴 → ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏))
65con4d 115 . 2 (𝐴 ⊆ On → (∃𝑏 ∈ On 𝐴 = suc 𝑏 𝐴𝐴))
76adantr 480 1 ((𝐴 ⊆ On ∧ 𝐴𝑉) → (∃𝑏 ∈ On 𝐴 = suc 𝑏 𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3059  wss 3933   cuni 4889  Ord word 6364  Oncon0 6365  suc csuc 6367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-tr 5242  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-ord 6368  df-on 6369  df-suc 6371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator