![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsupsucismax | Structured version Visualization version GIF version |
Description: If the union of a set of ordinals is a successor ordinal, then that union is the maximum element of the set. This is not a bijection because sets where the maximum element is zero or a limit ordinal exist. Lemma 2.11 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.) |
Ref | Expression |
---|---|
onsupsucismax | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → (∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏 → ∪ 𝐴 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsupnmax 43217 | . . . 4 ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 = ∪ ∪ 𝐴)) | |
2 | ssorduni 7798 | . . . . 5 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
3 | orduninsuc 7864 | . . . . 5 ⊢ (Ord ∪ 𝐴 → (∪ 𝐴 = ∪ ∪ 𝐴 ↔ ¬ ∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏)) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐴 ⊆ On → (∪ 𝐴 = ∪ ∪ 𝐴 ↔ ¬ ∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏)) |
5 | 1, 4 | sylibd 239 | . . 3 ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 ∈ 𝐴 → ¬ ∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏)) |
6 | 5 | con4d 115 | . 2 ⊢ (𝐴 ⊆ On → (∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏 → ∪ 𝐴 ∈ 𝐴)) |
7 | 6 | adantr 480 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → (∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏 → ∪ 𝐴 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 ⊆ wss 3963 ∪ cuni 4912 Ord word 6385 Oncon0 6386 suc csuc 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-suc 6392 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |