MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniss Structured version   Visualization version   GIF version

Theorem uniss 4896
Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
uniss (𝐴𝐵 𝐴 𝐵)

Proof of Theorem uniss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3957 . . . . 5 (𝐴𝐵 → (𝑦𝐴𝑦𝐵))
21anim2d 612 . . . 4 (𝐴𝐵 → ((𝑥𝑦𝑦𝐴) → (𝑥𝑦𝑦𝐵)))
32eximdv 1917 . . 3 (𝐴𝐵 → (∃𝑦(𝑥𝑦𝑦𝐴) → ∃𝑦(𝑥𝑦𝑦𝐵)))
4 eluni 4891 . . 3 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
5 eluni 4891 . . 3 (𝑥 𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵))
63, 4, 53imtr4g 296 . 2 (𝐴𝐵 → (𝑥 𝐴𝑥 𝐵))
76ssrdv 3969 1 (𝐴𝐵 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2109  wss 3931   cuni 4888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-ss 3948  df-uni 4889
This theorem is referenced by:  unissi  4897  unissd  4898  intssuni2  4954  uniintsn  4966  relfld  6269  dffv2  6979  trcl  9747  cflm  10269  coflim  10280  cfslbn  10286  fin23lem41  10371  fin1a2lem12  10430  tskuni  10802  prdsvallem  17473  prdsval  17474  prdsbas  17476  prdsplusg  17477  prdsmulr  17478  prdsvsca  17479  prdshom  17486  mrcssv  17631  catcfuccl  18136  catcxpccl  18224  mrelatlub  18577  mreclatBAD  18578  dprdres  20016  dmdprdsplit2lem  20033  tgcl  22912  distop  22938  fctop  22947  cctop  22949  neiptoptop  23074  cmpcld  23345  uncmp  23346  cmpfi  23351  comppfsc  23475  kgentopon  23481  txcmplem2  23585  filconn  23826  alexsubALTlem3  23992  alexsubALT  23994  ptcmplem3  23997  dyadmbllem  25557  shsupcl  31324  hsupss  31327  shatomistici  32347  carsggect  34355  cvmliftlem15  35325  filnetlem3  36403  icoreunrn  37382  ctbssinf  37429  pibt2  37440  heiborlem1  37840  lssats  39035  lpssat  39036  lssatle  39038  lssat  39039  dicval  41200  onsupneqmaxlim0  43215  onsupnmax  43219  onsssupeqcond  43271  mreuniss  48841
  Copyright terms: Public domain W3C validator