MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniss Structured version   Visualization version   GIF version

Theorem uniss 4847
Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
uniss (𝐴𝐵 𝐴 𝐵)

Proof of Theorem uniss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3914 . . . . 5 (𝐴𝐵 → (𝑦𝐴𝑦𝐵))
21anim2d 612 . . . 4 (𝐴𝐵 → ((𝑥𝑦𝑦𝐴) → (𝑥𝑦𝑦𝐵)))
32eximdv 1920 . . 3 (𝐴𝐵 → (∃𝑦(𝑥𝑦𝑦𝐴) → ∃𝑦(𝑥𝑦𝑦𝐵)))
4 eluni 4842 . . 3 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
5 eluni 4842 . . 3 (𝑥 𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵))
63, 4, 53imtr4g 296 . 2 (𝐴𝐵 → (𝑥 𝐴𝑥 𝐵))
76ssrdv 3927 1 (𝐴𝐵 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wex 1782  wcel 2106  wss 3887   cuni 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-uni 4840
This theorem is referenced by:  unissi  4848  unissd  4849  intssuni2  4904  uniintsn  4918  relfld  6178  dffv2  6863  trcl  9486  cflm  10006  coflim  10017  cfslbn  10023  fin23lem41  10108  fin1a2lem12  10167  tskuni  10539  prdsvallem  17165  prdsval  17166  prdsbas  17168  prdsplusg  17169  prdsmulr  17170  prdsvsca  17171  prdshom  17178  mrcssv  17323  catcfuccl  17834  catcfucclOLD  17835  catcxpccl  17924  catcxpcclOLD  17925  mrelatlub  18280  mreclatBAD  18281  dprdres  19631  dmdprdsplit2lem  19648  tgcl  22119  distop  22145  fctop  22154  cctop  22156  neiptoptop  22282  cmpcld  22553  uncmp  22554  cmpfi  22559  comppfsc  22683  kgentopon  22689  txcmplem2  22793  filconn  23034  alexsubALTlem3  23200  alexsubALT  23202  ptcmplem3  23205  dyadmbllem  24763  shsupcl  29700  hsupss  29703  shatomistici  30723  carsggect  32285  cvmliftlem15  33260  filnetlem3  34569  icoreunrn  35530  ctbssinf  35577  pibt2  35588  heiborlem1  35969  lssats  37026  lpssat  37027  lssatle  37029  lssat  37030  dicval  39190  mreuniss  46193
  Copyright terms: Public domain W3C validator