| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniss | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| uniss | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3928 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
| 2 | 1 | anim2d 612 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 3 | 2 | eximdv 1918 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 4 | eluni 4862 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
| 5 | eluni 4862 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ ∪ 𝐵)) |
| 7 | 6 | ssrdv 3940 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ⊆ wss 3902 ∪ cuni 4859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-uni 4860 |
| This theorem is referenced by: unissi 4868 unissd 4869 intssuni2 4923 uniintsn 4935 relfld 6222 dffv2 6917 trcl 9618 cflm 10138 coflim 10149 cfslbn 10155 fin23lem41 10240 fin1a2lem12 10299 tskuni 10671 prdsvallem 17355 prdsval 17356 prdsbas 17358 prdsplusg 17359 prdsmulr 17360 prdsvsca 17361 prdshom 17368 mrcssv 17517 catcfuccl 18022 catcxpccl 18110 mrelatlub 18465 mreclatBAD 18466 dprdres 19940 dmdprdsplit2lem 19957 tgcl 22882 distop 22908 fctop 22917 cctop 22919 neiptoptop 23044 cmpcld 23315 uncmp 23316 cmpfi 23321 comppfsc 23445 kgentopon 23451 txcmplem2 23555 filconn 23796 alexsubALTlem3 23962 alexsubALT 23964 ptcmplem3 23967 dyadmbllem 25525 shsupcl 31313 hsupss 31316 shatomistici 32336 carsggect 34326 cvmliftlem15 35330 filnetlem3 36413 icoreunrn 37392 ctbssinf 37439 pibt2 37450 heiborlem1 37850 lssats 39050 lpssat 39051 lssatle 39053 lssat 39054 dicval 41214 onsupneqmaxlim0 43256 onsupnmax 43260 onsssupeqcond 43312 mreuniss 48930 |
| Copyright terms: Public domain | W3C validator |