![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniss | Structured version Visualization version GIF version |
Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
uniss | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3988 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
2 | 1 | anim2d 612 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
3 | 2 | eximdv 1914 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
4 | eluni 4914 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
5 | eluni 4914 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ ∪ 𝐵)) |
7 | 6 | ssrdv 4000 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1775 ∈ wcel 2105 ⊆ wss 3962 ∪ cuni 4911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-uni 4912 |
This theorem is referenced by: unissi 4920 unissd 4921 intssuni2 4977 uniintsn 4989 relfld 6296 dffv2 7003 trcl 9765 cflm 10287 coflim 10298 cfslbn 10304 fin23lem41 10389 fin1a2lem12 10448 tskuni 10820 prdsvallem 17500 prdsval 17501 prdsbas 17503 prdsplusg 17504 prdsmulr 17505 prdsvsca 17506 prdshom 17513 mrcssv 17658 catcfuccl 18172 catcfucclOLD 18173 catcxpccl 18262 catcxpcclOLD 18263 mrelatlub 18619 mreclatBAD 18620 dprdres 20062 dmdprdsplit2lem 20079 tgcl 22991 distop 23017 fctop 23026 cctop 23028 neiptoptop 23154 cmpcld 23425 uncmp 23426 cmpfi 23431 comppfsc 23555 kgentopon 23561 txcmplem2 23665 filconn 23906 alexsubALTlem3 24072 alexsubALT 24074 ptcmplem3 24077 dyadmbllem 25647 shsupcl 31366 hsupss 31369 shatomistici 32389 carsggect 34299 cvmliftlem15 35282 filnetlem3 36362 icoreunrn 37341 ctbssinf 37388 pibt2 37399 heiborlem1 37797 lssats 38993 lpssat 38994 lssatle 38996 lssat 38997 dicval 41158 onsupneqmaxlim0 43212 onsupnmax 43216 onsssupeqcond 43269 mreuniss 48695 |
Copyright terms: Public domain | W3C validator |