| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniss | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| uniss | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3943 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
| 2 | 1 | anim2d 612 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 3 | 2 | eximdv 1917 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 4 | eluni 4877 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
| 5 | eluni 4877 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ ∪ 𝐵)) |
| 7 | 6 | ssrdv 3955 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3917 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-uni 4875 |
| This theorem is referenced by: unissi 4883 unissd 4884 intssuni2 4940 uniintsn 4952 relfld 6251 dffv2 6959 trcl 9688 cflm 10210 coflim 10221 cfslbn 10227 fin23lem41 10312 fin1a2lem12 10371 tskuni 10743 prdsvallem 17424 prdsval 17425 prdsbas 17427 prdsplusg 17428 prdsmulr 17429 prdsvsca 17430 prdshom 17437 mrcssv 17582 catcfuccl 18087 catcxpccl 18175 mrelatlub 18528 mreclatBAD 18529 dprdres 19967 dmdprdsplit2lem 19984 tgcl 22863 distop 22889 fctop 22898 cctop 22900 neiptoptop 23025 cmpcld 23296 uncmp 23297 cmpfi 23302 comppfsc 23426 kgentopon 23432 txcmplem2 23536 filconn 23777 alexsubALTlem3 23943 alexsubALT 23945 ptcmplem3 23948 dyadmbllem 25507 shsupcl 31274 hsupss 31277 shatomistici 32297 carsggect 34316 cvmliftlem15 35292 filnetlem3 36375 icoreunrn 37354 ctbssinf 37401 pibt2 37412 heiborlem1 37812 lssats 39012 lpssat 39013 lssatle 39015 lssat 39016 dicval 41177 onsupneqmaxlim0 43220 onsupnmax 43224 onsssupeqcond 43276 mreuniss 48892 |
| Copyright terms: Public domain | W3C validator |