| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniss | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| uniss | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3931 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
| 2 | 1 | anim2d 612 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 3 | 2 | eximdv 1917 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 4 | eluni 4864 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
| 5 | eluni 4864 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ ∪ 𝐵)) |
| 7 | 6 | ssrdv 3943 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3905 ∪ cuni 4861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-uni 4862 |
| This theorem is referenced by: unissi 4870 unissd 4871 intssuni2 4926 uniintsn 4938 relfld 6227 dffv2 6922 trcl 9643 cflm 10163 coflim 10174 cfslbn 10180 fin23lem41 10265 fin1a2lem12 10324 tskuni 10696 prdsvallem 17376 prdsval 17377 prdsbas 17379 prdsplusg 17380 prdsmulr 17381 prdsvsca 17382 prdshom 17389 mrcssv 17538 catcfuccl 18043 catcxpccl 18131 mrelatlub 18486 mreclatBAD 18487 dprdres 19927 dmdprdsplit2lem 19944 tgcl 22872 distop 22898 fctop 22907 cctop 22909 neiptoptop 23034 cmpcld 23305 uncmp 23306 cmpfi 23311 comppfsc 23435 kgentopon 23441 txcmplem2 23545 filconn 23786 alexsubALTlem3 23952 alexsubALT 23954 ptcmplem3 23957 dyadmbllem 25516 shsupcl 31300 hsupss 31303 shatomistici 32323 carsggect 34285 cvmliftlem15 35270 filnetlem3 36353 icoreunrn 37332 ctbssinf 37379 pibt2 37390 heiborlem1 37790 lssats 38990 lpssat 38991 lssatle 38993 lssat 38994 dicval 41155 onsupneqmaxlim0 43197 onsupnmax 43201 onsssupeqcond 43253 mreuniss 48885 |
| Copyright terms: Public domain | W3C validator |