MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniss Structured version   Visualization version   GIF version

Theorem uniss 4939
Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
uniss (𝐴𝐵 𝐴 𝐵)

Proof of Theorem uniss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 4002 . . . . 5 (𝐴𝐵 → (𝑦𝐴𝑦𝐵))
21anim2d 611 . . . 4 (𝐴𝐵 → ((𝑥𝑦𝑦𝐴) → (𝑥𝑦𝑦𝐵)))
32eximdv 1916 . . 3 (𝐴𝐵 → (∃𝑦(𝑥𝑦𝑦𝐴) → ∃𝑦(𝑥𝑦𝑦𝐵)))
4 eluni 4934 . . 3 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
5 eluni 4934 . . 3 (𝑥 𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵))
63, 4, 53imtr4g 296 . 2 (𝐴𝐵 → (𝑥 𝐴𝑥 𝐵))
76ssrdv 4014 1 (𝐴𝐵 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1777  wcel 2108  wss 3976   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-uni 4932
This theorem is referenced by:  unissi  4940  unissd  4941  intssuni2  4997  uniintsn  5009  relfld  6306  dffv2  7017  trcl  9797  cflm  10319  coflim  10330  cfslbn  10336  fin23lem41  10421  fin1a2lem12  10480  tskuni  10852  prdsvallem  17514  prdsval  17515  prdsbas  17517  prdsplusg  17518  prdsmulr  17519  prdsvsca  17520  prdshom  17527  mrcssv  17672  catcfuccl  18186  catcfucclOLD  18187  catcxpccl  18276  catcxpcclOLD  18277  mrelatlub  18632  mreclatBAD  18633  dprdres  20072  dmdprdsplit2lem  20089  tgcl  22997  distop  23023  fctop  23032  cctop  23034  neiptoptop  23160  cmpcld  23431  uncmp  23432  cmpfi  23437  comppfsc  23561  kgentopon  23567  txcmplem2  23671  filconn  23912  alexsubALTlem3  24078  alexsubALT  24080  ptcmplem3  24083  dyadmbllem  25653  shsupcl  31370  hsupss  31373  shatomistici  32393  carsggect  34283  cvmliftlem15  35266  filnetlem3  36346  icoreunrn  37325  ctbssinf  37372  pibt2  37383  heiborlem1  37771  lssats  38968  lpssat  38969  lssatle  38971  lssat  38972  dicval  41133  onsupneqmaxlim0  43185  onsupnmax  43189  onsssupeqcond  43242  mreuniss  48579
  Copyright terms: Public domain W3C validator