| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniss | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| uniss | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3957 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
| 2 | 1 | anim2d 612 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 3 | 2 | eximdv 1917 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 4 | eluni 4891 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
| 5 | eluni 4891 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ ∪ 𝐵)) |
| 7 | 6 | ssrdv 3969 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3931 ∪ cuni 4888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-uni 4889 |
| This theorem is referenced by: unissi 4897 unissd 4898 intssuni2 4954 uniintsn 4966 relfld 6269 dffv2 6979 trcl 9747 cflm 10269 coflim 10280 cfslbn 10286 fin23lem41 10371 fin1a2lem12 10430 tskuni 10802 prdsvallem 17473 prdsval 17474 prdsbas 17476 prdsplusg 17477 prdsmulr 17478 prdsvsca 17479 prdshom 17486 mrcssv 17631 catcfuccl 18136 catcxpccl 18224 mrelatlub 18577 mreclatBAD 18578 dprdres 20016 dmdprdsplit2lem 20033 tgcl 22912 distop 22938 fctop 22947 cctop 22949 neiptoptop 23074 cmpcld 23345 uncmp 23346 cmpfi 23351 comppfsc 23475 kgentopon 23481 txcmplem2 23585 filconn 23826 alexsubALTlem3 23992 alexsubALT 23994 ptcmplem3 23997 dyadmbllem 25557 shsupcl 31324 hsupss 31327 shatomistici 32347 carsggect 34355 cvmliftlem15 35325 filnetlem3 36403 icoreunrn 37382 ctbssinf 37429 pibt2 37440 heiborlem1 37840 lssats 39035 lpssat 39036 lssatle 39038 lssat 39039 dicval 41200 onsupneqmaxlim0 43215 onsupnmax 43219 onsssupeqcond 43271 mreuniss 48841 |
| Copyright terms: Public domain | W3C validator |