| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniss | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| uniss | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3924 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
| 2 | 1 | anim2d 612 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 3 | 2 | eximdv 1918 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 4 | eluni 4861 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
| 5 | eluni 4861 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ ∪ 𝐵)) |
| 7 | 6 | ssrdv 3936 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ⊆ wss 3898 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-uni 4859 |
| This theorem is referenced by: unissi 4867 unissd 4868 intssuni2 4923 uniintsn 4935 relfld 6227 dffv2 6923 trcl 9625 cflm 10148 coflim 10159 cfslbn 10165 fin23lem41 10250 fin1a2lem12 10309 tskuni 10681 prdsvallem 17360 prdsval 17361 prdsbas 17363 prdsplusg 17364 prdsmulr 17365 prdsvsca 17366 prdshom 17373 mrcssv 17522 catcfuccl 18027 catcxpccl 18115 mrelatlub 18470 mreclatBAD 18471 dprdres 19944 dmdprdsplit2lem 19961 tgcl 22885 distop 22911 fctop 22920 cctop 22922 neiptoptop 23047 cmpcld 23318 uncmp 23319 cmpfi 23324 comppfsc 23448 kgentopon 23454 txcmplem2 23558 filconn 23799 alexsubALTlem3 23965 alexsubALT 23967 ptcmplem3 23970 dyadmbllem 25528 shsupcl 31320 hsupss 31323 shatomistici 32343 carsggect 34352 cvmliftlem15 35363 filnetlem3 36445 icoreunrn 37424 ctbssinf 37471 pibt2 37482 heiborlem1 37871 lssats 39131 lpssat 39132 lssatle 39134 lssat 39135 dicval 41295 onsupneqmaxlim0 43341 onsupnmax 43345 onsssupeqcond 43397 mreuniss 49024 |
| Copyright terms: Public domain | W3C validator |