MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniss Structured version   Visualization version   GIF version

Theorem uniss 4867
Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
uniss (𝐴𝐵 𝐴 𝐵)

Proof of Theorem uniss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3928 . . . . 5 (𝐴𝐵 → (𝑦𝐴𝑦𝐵))
21anim2d 612 . . . 4 (𝐴𝐵 → ((𝑥𝑦𝑦𝐴) → (𝑥𝑦𝑦𝐵)))
32eximdv 1918 . . 3 (𝐴𝐵 → (∃𝑦(𝑥𝑦𝑦𝐴) → ∃𝑦(𝑥𝑦𝑦𝐵)))
4 eluni 4862 . . 3 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
5 eluni 4862 . . 3 (𝑥 𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵))
63, 4, 53imtr4g 296 . 2 (𝐴𝐵 → (𝑥 𝐴𝑥 𝐵))
76ssrdv 3940 1 (𝐴𝐵 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  wcel 2111  wss 3902   cuni 4859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3919  df-uni 4860
This theorem is referenced by:  unissi  4868  unissd  4869  intssuni2  4923  uniintsn  4935  relfld  6222  dffv2  6917  trcl  9618  cflm  10138  coflim  10149  cfslbn  10155  fin23lem41  10240  fin1a2lem12  10299  tskuni  10671  prdsvallem  17355  prdsval  17356  prdsbas  17358  prdsplusg  17359  prdsmulr  17360  prdsvsca  17361  prdshom  17368  mrcssv  17517  catcfuccl  18022  catcxpccl  18110  mrelatlub  18465  mreclatBAD  18466  dprdres  19940  dmdprdsplit2lem  19957  tgcl  22882  distop  22908  fctop  22917  cctop  22919  neiptoptop  23044  cmpcld  23315  uncmp  23316  cmpfi  23321  comppfsc  23445  kgentopon  23451  txcmplem2  23555  filconn  23796  alexsubALTlem3  23962  alexsubALT  23964  ptcmplem3  23967  dyadmbllem  25525  shsupcl  31313  hsupss  31316  shatomistici  32336  carsggect  34326  cvmliftlem15  35330  filnetlem3  36413  icoreunrn  37392  ctbssinf  37439  pibt2  37450  heiborlem1  37850  lssats  39050  lpssat  39051  lssatle  39053  lssat  39054  dicval  41214  onsupneqmaxlim0  43256  onsupnmax  43260  onsssupeqcond  43312  mreuniss  48930
  Copyright terms: Public domain W3C validator