Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniss | Structured version Visualization version GIF version |
Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
uniss | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3887 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
2 | 1 | anim2d 614 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
3 | 2 | eximdv 1918 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
4 | eluni 4804 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
5 | eluni 4804 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
6 | 3, 4, 5 | 3imtr4g 299 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ ∪ 𝐵)) |
7 | 6 | ssrdv 3900 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∃wex 1781 ∈ wcel 2111 ⊆ wss 3860 ∪ cuni 4801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3867 df-ss 3877 df-uni 4802 |
This theorem is referenced by: unissi 4810 unissd 4811 intssuni2 4866 uniintsn 4880 relfld 6109 dffv2 6752 trcl 9216 cflm 9723 coflim 9734 cfslbn 9740 fin23lem41 9825 fin1a2lem12 9884 tskuni 10256 prdsval 16800 prdsbas 16802 prdsplusg 16803 prdsmulr 16804 prdsvsca 16805 prdshom 16812 mrcssv 16957 catcfuccl 17449 catcxpccl 17537 mrelatlub 17876 mreclatBAD 17877 dprdres 19232 dmdprdsplit2lem 19249 tgcl 21683 distop 21709 fctop 21718 cctop 21720 neiptoptop 21845 cmpcld 22116 uncmp 22117 cmpfi 22122 comppfsc 22246 kgentopon 22252 txcmplem2 22356 filconn 22597 alexsubALTlem3 22763 alexsubALT 22765 ptcmplem3 22768 dyadmbllem 24313 shsupcl 29234 hsupss 29237 shatomistici 30257 carsggect 31817 cvmliftlem15 32789 filnetlem3 34153 icoreunrn 35091 ctbssinf 35138 pibt2 35149 heiborlem1 35564 lssats 36623 lpssat 36624 lssatle 36626 lssat 36627 dicval 38787 |
Copyright terms: Public domain | W3C validator |