| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniss | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| uniss | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3940 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
| 2 | 1 | anim2d 612 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 3 | 2 | eximdv 1917 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 4 | eluni 4874 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
| 5 | eluni 4874 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ ∪ 𝐵)) |
| 7 | 6 | ssrdv 3952 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3914 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-uni 4872 |
| This theorem is referenced by: unissi 4880 unissd 4881 intssuni2 4937 uniintsn 4949 relfld 6248 dffv2 6956 trcl 9681 cflm 10203 coflim 10214 cfslbn 10220 fin23lem41 10305 fin1a2lem12 10364 tskuni 10736 prdsvallem 17417 prdsval 17418 prdsbas 17420 prdsplusg 17421 prdsmulr 17422 prdsvsca 17423 prdshom 17430 mrcssv 17575 catcfuccl 18080 catcxpccl 18168 mrelatlub 18521 mreclatBAD 18522 dprdres 19960 dmdprdsplit2lem 19977 tgcl 22856 distop 22882 fctop 22891 cctop 22893 neiptoptop 23018 cmpcld 23289 uncmp 23290 cmpfi 23295 comppfsc 23419 kgentopon 23425 txcmplem2 23529 filconn 23770 alexsubALTlem3 23936 alexsubALT 23938 ptcmplem3 23941 dyadmbllem 25500 shsupcl 31267 hsupss 31270 shatomistici 32290 carsggect 34309 cvmliftlem15 35285 filnetlem3 36368 icoreunrn 37347 ctbssinf 37394 pibt2 37405 heiborlem1 37805 lssats 39005 lpssat 39006 lssatle 39008 lssat 39009 dicval 41170 onsupneqmaxlim0 43213 onsupnmax 43217 onsssupeqcond 43269 mreuniss 48888 |
| Copyright terms: Public domain | W3C validator |