Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniss | Structured version Visualization version GIF version |
Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
uniss | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3914 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
2 | 1 | anim2d 612 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
3 | 2 | eximdv 1920 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
4 | eluni 4842 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
5 | eluni 4842 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ ∪ 𝐵)) |
7 | 6 | ssrdv 3927 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 ⊆ wss 3887 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 |
This theorem is referenced by: unissi 4848 unissd 4849 intssuni2 4904 uniintsn 4918 relfld 6178 dffv2 6863 trcl 9486 cflm 10006 coflim 10017 cfslbn 10023 fin23lem41 10108 fin1a2lem12 10167 tskuni 10539 prdsvallem 17165 prdsval 17166 prdsbas 17168 prdsplusg 17169 prdsmulr 17170 prdsvsca 17171 prdshom 17178 mrcssv 17323 catcfuccl 17834 catcfucclOLD 17835 catcxpccl 17924 catcxpcclOLD 17925 mrelatlub 18280 mreclatBAD 18281 dprdres 19631 dmdprdsplit2lem 19648 tgcl 22119 distop 22145 fctop 22154 cctop 22156 neiptoptop 22282 cmpcld 22553 uncmp 22554 cmpfi 22559 comppfsc 22683 kgentopon 22689 txcmplem2 22793 filconn 23034 alexsubALTlem3 23200 alexsubALT 23202 ptcmplem3 23205 dyadmbllem 24763 shsupcl 29700 hsupss 29703 shatomistici 30723 carsggect 32285 cvmliftlem15 33260 filnetlem3 34569 icoreunrn 35530 ctbssinf 35577 pibt2 35588 heiborlem1 35969 lssats 37026 lpssat 37027 lssatle 37029 lssat 37030 dicval 39190 mreuniss 46193 |
Copyright terms: Public domain | W3C validator |