Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniss | Structured version Visualization version GIF version |
Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
uniss | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3910 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
2 | 1 | anim2d 611 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
3 | 2 | eximdv 1921 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
4 | eluni 4839 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
5 | eluni 4839 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
6 | 3, 4, 5 | 3imtr4g 295 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ ∪ 𝐵)) |
7 | 6 | ssrdv 3923 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ⊆ wss 3883 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 |
This theorem is referenced by: unissi 4845 unissd 4846 intssuni2 4901 uniintsn 4915 relfld 6167 dffv2 6845 trcl 9417 cflm 9937 coflim 9948 cfslbn 9954 fin23lem41 10039 fin1a2lem12 10098 tskuni 10470 prdsvallem 17082 prdsval 17083 prdsbas 17085 prdsplusg 17086 prdsmulr 17087 prdsvsca 17088 prdshom 17095 mrcssv 17240 catcfuccl 17750 catcfucclOLD 17751 catcxpccl 17840 catcxpcclOLD 17841 mrelatlub 18195 mreclatBAD 18196 dprdres 19546 dmdprdsplit2lem 19563 tgcl 22027 distop 22053 fctop 22062 cctop 22064 neiptoptop 22190 cmpcld 22461 uncmp 22462 cmpfi 22467 comppfsc 22591 kgentopon 22597 txcmplem2 22701 filconn 22942 alexsubALTlem3 23108 alexsubALT 23110 ptcmplem3 23113 dyadmbllem 24668 shsupcl 29601 hsupss 29604 shatomistici 30624 carsggect 32185 cvmliftlem15 33160 filnetlem3 34496 icoreunrn 35457 ctbssinf 35504 pibt2 35515 heiborlem1 35896 lssats 36953 lpssat 36954 lssatle 36956 lssat 36957 dicval 39117 mreuniss 46081 |
Copyright terms: Public domain | W3C validator |