![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniss | Structured version Visualization version GIF version |
Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
uniss | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3976 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
2 | 1 | anim2d 613 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
3 | 2 | eximdv 1921 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
4 | eluni 4912 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
5 | eluni 4912 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ ∪ 𝐵)) |
7 | 6 | ssrdv 3989 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 ⊆ wss 3949 ∪ cuni 4909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-uni 4910 |
This theorem is referenced by: unissi 4918 unissd 4919 intssuni2 4978 uniintsn 4992 relfld 6275 dffv2 6987 trcl 9723 cflm 10245 coflim 10256 cfslbn 10262 fin23lem41 10347 fin1a2lem12 10406 tskuni 10778 prdsvallem 17400 prdsval 17401 prdsbas 17403 prdsplusg 17404 prdsmulr 17405 prdsvsca 17406 prdshom 17413 mrcssv 17558 catcfuccl 18069 catcfucclOLD 18070 catcxpccl 18159 catcxpcclOLD 18160 mrelatlub 18515 mreclatBAD 18516 dprdres 19898 dmdprdsplit2lem 19915 tgcl 22472 distop 22498 fctop 22507 cctop 22509 neiptoptop 22635 cmpcld 22906 uncmp 22907 cmpfi 22912 comppfsc 23036 kgentopon 23042 txcmplem2 23146 filconn 23387 alexsubALTlem3 23553 alexsubALT 23555 ptcmplem3 23558 dyadmbllem 25116 shsupcl 30591 hsupss 30594 shatomistici 31614 carsggect 33317 cvmliftlem15 34289 filnetlem3 35265 icoreunrn 36240 ctbssinf 36287 pibt2 36298 heiborlem1 36679 lssats 37882 lpssat 37883 lssatle 37885 lssat 37886 dicval 40047 onsupneqmaxlim0 41973 onsupnmax 41977 onsssupeqcond 42030 mreuniss 47532 |
Copyright terms: Public domain | W3C validator |