![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniss | Structured version Visualization version GIF version |
Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
uniss | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3790 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
2 | 1 | anim2d 606 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
3 | 2 | eximdv 2013 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
4 | eluni 4629 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
5 | eluni 4629 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
6 | 3, 4, 5 | 3imtr4g 288 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ ∪ 𝐵)) |
7 | 6 | ssrdv 3802 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∃wex 1875 ∈ wcel 2157 ⊆ wss 3767 ∪ cuni 4626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-v 3385 df-in 3774 df-ss 3781 df-uni 4627 |
This theorem is referenced by: unissi 4651 unissd 4652 intssuni2 4690 uniintsn 4702 relfld 5878 dffv2 6494 trcl 8852 cflm 9358 coflim 9369 cfslbn 9375 fin23lem41 9460 fin1a2lem12 9519 tskuni 9891 prdsval 16427 prdsbas 16429 prdsplusg 16430 prdsmulr 16431 prdsvsca 16432 prdshom 16439 mrcssv 16586 catcfuccl 17070 catcxpccl 17159 mrelatlub 17498 mreclatBAD 17499 dprdres 18740 dmdprdsplit2lem 18757 tgcl 21099 distop 21125 fctop 21134 cctop 21136 neiptoptop 21261 cmpcld 21531 uncmp 21532 cmpfi 21537 comppfsc 21661 kgentopon 21667 txcmplem2 21771 filconn 22012 alexsubALTlem3 22178 alexsubALT 22180 ptcmplem3 22183 dyadmbllem 23704 shsupcl 28714 hsupss 28717 shatomistici 29737 pwuniss 29880 carsggect 30888 carsgclctun 30891 cvmliftlem15 31789 frrlem5c 32291 filnetlem3 32879 icoreunrn 33697 heiborlem1 34089 lssats 35025 lpssat 35026 lssatle 35028 lssat 35029 dicval 37189 pwsal 41266 prsal 41269 intsaluni 41278 |
Copyright terms: Public domain | W3C validator |