![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniss | Structured version Visualization version GIF version |
Description: Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
uniss | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 4002 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
2 | 1 | anim2d 611 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
3 | 2 | eximdv 1916 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
4 | eluni 4934 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
5 | eluni 4934 | . . 3 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ ∪ 𝐵)) |
7 | 6 | ssrdv 4014 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ⊆ wss 3976 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 |
This theorem is referenced by: unissi 4940 unissd 4941 intssuni2 4997 uniintsn 5009 relfld 6306 dffv2 7017 trcl 9797 cflm 10319 coflim 10330 cfslbn 10336 fin23lem41 10421 fin1a2lem12 10480 tskuni 10852 prdsvallem 17514 prdsval 17515 prdsbas 17517 prdsplusg 17518 prdsmulr 17519 prdsvsca 17520 prdshom 17527 mrcssv 17672 catcfuccl 18186 catcfucclOLD 18187 catcxpccl 18276 catcxpcclOLD 18277 mrelatlub 18632 mreclatBAD 18633 dprdres 20072 dmdprdsplit2lem 20089 tgcl 22997 distop 23023 fctop 23032 cctop 23034 neiptoptop 23160 cmpcld 23431 uncmp 23432 cmpfi 23437 comppfsc 23561 kgentopon 23567 txcmplem2 23671 filconn 23912 alexsubALTlem3 24078 alexsubALT 24080 ptcmplem3 24083 dyadmbllem 25653 shsupcl 31370 hsupss 31373 shatomistici 32393 carsggect 34283 cvmliftlem15 35266 filnetlem3 36346 icoreunrn 37325 ctbssinf 37372 pibt2 37383 heiborlem1 37771 lssats 38968 lpssat 38969 lssatle 38971 lssat 38972 dicval 41133 onsupneqmaxlim0 43185 onsupnmax 43189 onsssupeqcond 43242 mreuniss 48579 |
Copyright terms: Public domain | W3C validator |